File size: 22,780 Bytes
f6ded1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import math
from typing import Optional, List, Tuple, Dict, Callable
from enum import Enum
class FractalPatternType(Enum):
"""Tipos de padrões fractais suportados pela FractalBrainNet"""
MANDELBROT = "mandelbrot"
SIERPINSKI = "sierpinski"
JULIA = "julia"
CANTOR = "cantor"
DRAGON_CURVE = "dragon_curve"
class FractalPatternGenerator:
"""
Gerador de padrões fractais para definir as regras de conexão
entre neurônios na FractalBrainNet.
"""
@staticmethod
def mandelbrot_connectivity(width: int, height: int, max_iter: int = 100) -> torch.Tensor:
"""
Gera matriz de conectividade baseada no conjunto de Mandelbrot.
Valores mais altos indicam conexões mais fortes.
"""
x = torch.linspace(-2.5, 1.5, width)
y = torch.linspace(-1.5, 1.5, height)
X, Y = torch.meshgrid(x, y, indexing='ij')
c = X + 1j * Y
z = torch.zeros_like(c)
connectivity = torch.zeros(width, height)
for i in range(max_iter):
mask = torch.abs(z) <= 2
z[mask] = z[mask] ** 2 + c[mask]
connectivity[mask] += 1
# Normalizar para [0, 1]
connectivity = connectivity / max_iter
return connectivity
@staticmethod
def sierpinski_connectivity(size: int, iterations: int = 5) -> torch.Tensor:
"""
Gera matriz de conectividade baseada no triângulo de Sierpinski.
"""
pattern = torch.zeros(size, size)
pattern[0, size//2] = 1.0
for _ in range(iterations):
new_pattern = torch.zeros_like(pattern)
for i in range(size-1):
for j in range(size-1):
if pattern[i, j] > 0:
# Regra do triângulo de Sierpinski
if i+1 < size and j > 0:
new_pattern[i+1, j-1] = 1.0
if i+1 < size and j+1 < size:
new_pattern[i+1, j+1] = 1.0
pattern = torch.maximum(pattern, new_pattern)
return pattern
@staticmethod
def julia_connectivity(width: int, height: int, c_real: float = -0.7,
c_imag: float = 0.27015, max_iter: int = 100) -> torch.Tensor:
"""
Gera matriz de conectividade baseada no conjunto de Julia.
"""
x = torch.linspace(-2, 2, width)
y = torch.linspace(-2, 2, height)
X, Y = torch.meshgrid(x, y, indexing='ij')
z = X + 1j * Y
c = complex(c_real, c_imag)
connectivity = torch.zeros(width, height)
for i in range(max_iter):
mask = torch.abs(z) <= 2
z[mask] = z[mask] ** 2 + c
connectivity[mask] += 1
connectivity = connectivity / max_iter
return connectivity
class CerebralDynamicsModule(nn.Module):
"""
Módulo que simula dinâmicas cerebrais através de processamento
distribuído e paralelo, inspirado na organização hierárquica do cérebro.
"""
def __init__(self, channels: int, fractal_pattern: torch.Tensor):
super().__init__()
self.channels = channels
self.fractal_pattern = nn.Parameter(fractal_pattern, requires_grad=False)
# Múltiplas escalas de processamento (simulando diferentes frequências cerebrais)
self.alpha_processing = nn.Conv2d(channels, channels//4, 1) # 8-12 Hz
self.beta_processing = nn.Conv2d(channels, channels//4, 1) # 13-30 Hz
self.gamma_processing = nn.Conv2d(channels, channels//4, 1) # 30-100 Hz
self.theta_processing = nn.Conv2d(channels, channels//4, 1) # 4-8 Hz
# Integração das diferentes escalas
self.integration = nn.Conv2d(channels, channels, 1)
self.normalization = nn.LayerNorm([channels])
def forward(self, x: torch.Tensor) -> torch.Tensor:
batch_size, channels, height, width = x.shape
# Aplicar padrão fractal como máscara de atenção
if self.fractal_pattern.shape[-2:] != (height, width):
fractal_mask = F.interpolate(
self.fractal_pattern.unsqueeze(0).unsqueeze(0),
size=(height, width), mode='bilinear', align_corners=False
).squeeze()
else:
fractal_mask = self.fractal_pattern
# Processamento em múltiplas escalas (simulando bandas de frequência cerebral)
alpha = self.alpha_processing(x) * fractal_mask.unsqueeze(0).unsqueeze(0)
beta = self.beta_processing(x) * (1 - fractal_mask.unsqueeze(0).unsqueeze(0))
gamma = self.gamma_processing(x) * fractal_mask.unsqueeze(0).unsqueeze(0) * 0.5
theta = self.theta_processing(x) * torch.sin(fractal_mask * math.pi).unsqueeze(0).unsqueeze(0)
# Combinar diferentes escalas
combined = torch.cat([alpha, beta, gamma, theta], dim=1)
integrated = self.integration(combined)
# Normalização adaptativa
integrated = integrated.permute(0, 2, 3, 1)
integrated = self.normalization(integrated)
integrated = integrated.permute(0, 3, 1, 2)
return integrated + x # Conexão residual
class FractalNeuralBlock(nn.Module):
"""
Bloco neural fractal que implementa a regra de expansão fractal
com dinâmicas cerebrais integradas.
"""
def __init__(self, level: int, in_channels: int, out_channels: int,
fractal_pattern: torch.Tensor, drop_path_prob: float = 0.1):
super().__init__()
self.level = level
if level == 1:
# Caso base com dinâmicas cerebrais
self.base_conv = nn.Conv2d(in_channels, out_channels, 3, padding=1)
self.cerebral_dynamics = CerebralDynamicsModule(out_channels, fractal_pattern)
self.activation = nn.GELU() # GELU para maior expressividade
self.norm = nn.BatchNorm2d(out_channels)
else:
# Estrutura recursiva fractal
self.deep_branch = nn.Sequential(
FractalNeuralBlock(level-1, in_channels, out_channels, fractal_pattern, drop_path_prob),
FractalNeuralBlock(level-1, out_channels, out_channels, fractal_pattern, drop_path_prob)
)
self.shallow_branch = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, padding=1),
CerebralDynamicsModule(out_channels, fractal_pattern),
nn.BatchNorm2d(out_channels),
nn.GELU()
)
# Mecanismo de atenção fractal
self.fractal_attention = nn.Sequential(
nn.Conv2d(out_channels * 2, out_channels // 4, 1),
nn.GELU(),
nn.Conv2d(out_channels // 4, 2, 1),
nn.Sigmoid()
)
self.drop_path = nn.Dropout2d(drop_path_prob) if drop_path_prob > 0 else nn.Identity()
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.level == 1:
out = self.base_conv(x)
out = self.norm(out)
out = self.cerebral_dynamics(out)
out = self.activation(out)
return self.drop_path(out)
else:
# Processamento em ramos paralelos
deep_out = self.deep_branch(x)
shallow_out = self.shallow_branch(x)
# Mecanismo de atenção para combinar ramos
combined = torch.cat([deep_out, shallow_out], dim=1)
attention_weights = self.fractal_attention(combined)
# Combinar com pesos adaptativos
alpha, beta = attention_weights.chunk(2, dim=1)
result = alpha * deep_out + beta * shallow_out
return self.drop_path(result)
class AdaptiveScaleProcessor(nn.Module):
"""
Processador adaptativo que opera em múltiplas escalas,
simulando a capacidade do cérebro de processar informações
em diferentes níveis de abstração simultaneamente.
"""
def __init__(self, channels: int):
super().__init__()
self.channels = channels
# Diferentes escalas de processamento
self.local_processor = nn.Conv2d(channels, channels, 1)
self.regional_processor = nn.Conv2d(channels, channels, 3, padding=1)
self.global_processor = nn.Conv2d(channels, channels, 5, padding=2)
# Integração adaptativa
self.scale_fusion = nn.Sequential(
nn.Conv2d(channels * 3, channels, 1),
nn.BatchNorm2d(channels),
nn.GELU()
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
local = self.local_processor(x)
regional = self.regional_processor(x)
global_proc = self.global_processor(x)
# Combinar escalas
multi_scale = torch.cat([local, regional, global_proc], dim=1)
fused = self.scale_fusion(multi_scale)
return fused + x
class FractalBrainNet(nn.Module):
"""
FractalBrainNet: Rede neural que combina a profundidade das redes profundas
com a complexidade e elegância dos fractais, capaz de emular dinâmicas cerebrais
através de estruturas hierárquicas e auto-similares.
Baseada no artigo de Jose R. F. Junior (2024).
"""
def __init__(self,
num_classes: int = 10,
in_channels: int = 3,
fractal_levels: List[int] = [2, 3, 4, 5],
base_channels: int = 64,
fractal_pattern_type: FractalPatternType = FractalPatternType.MANDELBROT,
pattern_resolution: int = 32,
drop_path_prob: float = 0.15,
enable_continuous_learning: bool = True):
super().__init__()
self.num_classes = num_classes
self.fractal_levels = fractal_levels
self.enable_continuous_learning = enable_continuous_learning
# Gerar padrão fractal base
self.fractal_pattern = self._generate_fractal_pattern(
fractal_pattern_type, pattern_resolution
)
# Camada de entrada adaptativa
self.stem = nn.Sequential(
nn.Conv2d(in_channels, base_channels, 7, stride=2, padding=3),
nn.BatchNorm2d(base_channels),
nn.GELU(),
AdaptiveScaleProcessor(base_channels)
)
# Blocos fractais neurais hierárquicos
self.fractal_stages = nn.ModuleList()
current_channels = base_channels
for i, level in enumerate(fractal_levels):
# Aumentar canais progressivamente
stage_channels = base_channels * (2 ** min(i, 4))
# Bloco fractal principal
fractal_block = FractalNeuralBlock(
level, current_channels, stage_channels,
self.fractal_pattern, drop_path_prob
)
# Processador multi-escala
scale_processor = AdaptiveScaleProcessor(stage_channels)
# Pooling adaptativo
if i < len(fractal_levels) - 1:
pooling = nn.Sequential(
nn.Conv2d(stage_channels, stage_channels, 3, stride=2, padding=1),
nn.BatchNorm2d(stage_channels),
nn.GELU()
)
else:
pooling = nn.Identity()
self.fractal_stages.append(nn.Sequential(
fractal_block,
scale_processor,
pooling
))
current_channels = stage_channels
# Sistema de atenção global inspirado na atenção cerebral
self.global_attention = nn.MultiheadAttention(
current_channels, num_heads=8, batch_first=True
)
# Cabeça de classificação com aprendizado contínuo
self.adaptive_pool = nn.AdaptiveAvgPool2d((1, 1))
self.classifier = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(current_channels, current_channels // 2),
nn.GELU(),
nn.Dropout(0.1),
nn.Linear(current_channels // 2, num_classes)
)
# Módulo de meta-aprendizado para adaptação contínua
if enable_continuous_learning:
self.meta_learner = nn.Sequential(
nn.Linear(current_channels, current_channels // 4),
nn.GELU(),
nn.Linear(current_channels // 4, current_channels)
)
self._initialize_weights()
def _generate_fractal_pattern(self, pattern_type: FractalPatternType,
resolution: int) -> torch.Tensor:
"""Gera o padrão fractal base para a rede."""
if pattern_type == FractalPatternType.MANDELBROT:
return FractalPatternGenerator.mandelbrot_connectivity(resolution, resolution)
elif pattern_type == FractalPatternType.SIERPINSKI:
return FractalPatternGenerator.sierpinski_connectivity(resolution)
elif pattern_type == FractalPatternType.JULIA:
return FractalPatternGenerator.julia_connectivity(resolution, resolution)
else:
# Padrão padrão (Mandelbrot)
return FractalPatternGenerator.mandelbrot_connectivity(resolution, resolution)
def _initialize_weights(self):
"""Inicialização de pesos inspirada na neuroplasticidade."""
for m in self.modules():
if isinstance(m, nn.Conv2d):
# Inicialização He com variação fractal
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, (nn.BatchNorm2d, nn.LayerNorm)):
nn.init.constant_(m.weight, 1.0)
nn.init.constant_(m.bias, 0.0)
elif isinstance(m, nn.Linear):
nn.init.trunc_normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x: torch.Tensor,
return_attention_maps: bool = False) -> torch.Tensor:
"""
Forward pass com processamento hierárquico e dinâmicas cerebrais.
"""
# Extração inicial de características
x = self.stem(x)
attention_maps = []
# Processamento através dos estágios fractais
for stage in self.fractal_stages:
x = stage(x)
if return_attention_maps:
# Capturar mapas de atenção para análise
attention_map = torch.mean(x, dim=1, keepdim=True)
attention_maps.append(attention_map)
# Pooling adaptativo global
pooled = self.adaptive_pool(x)
features = pooled.flatten(1)
# Aplicar atenção global se habilitada
if hasattr(self, 'global_attention'):
# Reformatar para atenção multi-cabeça
attn_input = features.unsqueeze(1)
attended, _ = self.global_attention(attn_input, attn_input, attn_input)
features = attended.squeeze(1)
# Meta-aprendizado para adaptação contínua
if self.enable_continuous_learning and hasattr(self, 'meta_learner'):
meta_features = self.meta_learner(features)
features = features + 0.1 * meta_features # Residual meta-learning
# Classificação final
output = self.classifier(features)
if return_attention_maps:
return output, attention_maps
return output
def analyze_fractal_patterns(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
"""
Analisa os padrões emergentes gerados pela estrutura fractal,
conforme mencionado na metodologia do artigo.
"""
self.eval()
with torch.no_grad():
_, attention_maps = self.forward(x, return_attention_maps=True)
analysis = {
'fractal_pattern': self.fractal_pattern,
'attention_maps': attention_maps,
'pattern_complexity': self._compute_pattern_complexity(attention_maps),
'hierarchical_organization': self._analyze_hierarchical_organization(attention_maps)
}
return analysis
def _compute_pattern_complexity(self, attention_maps: List[torch.Tensor]) -> List[float]:
"""Computa a complexidade dos padrões emergentes."""
complexities = []
for attention_map in attention_maps:
# Usar entropia como medida de complexidade
flat_map = attention_map.flatten()
prob_dist = F.softmax(flat_map, dim=0)
entropy = -torch.sum(prob_dist * torch.log(prob_dist + 1e-8))
complexities.append(entropy.item())
return complexities
def _analyze_hierarchical_organization(self, attention_maps: List[torch.Tensor]) -> Dict[str, float]:
"""Analisa a organização hierárquica dos padrões."""
if len(attention_maps) < 2:
return {'correlation': 0.0, 'hierarchy_score': 0.0}
# Correlação entre níveis hierárquicos
correlations = []
for i in range(len(attention_maps) - 1):
map1 = attention_maps[i].flatten()
map2 = F.interpolate(attention_maps[i+1], size=attention_maps[i].shape[-2:],
mode='bilinear', align_corners=False).flatten()
correlation = torch.corrcoef(torch.stack([map1, map2]))[0, 1]
correlations.append(correlation.item())
avg_correlation = sum(correlations) / len(correlations)
hierarchy_score = 1.0 - avg_correlation # Maior diversidade = maior hierarquia
return {
'correlation': avg_correlation,
'hierarchy_score': hierarchy_score
}
# Função para criar modelos FractalBrainNet pré-configurados
def create_fractal_brain_net(model_size: str = 'medium',
num_classes: int = 10,
fractal_pattern: FractalPatternType = FractalPatternType.MANDELBROT) -> FractalBrainNet:
"""
Cria modelos FractalBrainNet pré-configurados inspirados no artigo de Jose R. F. Junior.
Args:
model_size: 'small', 'medium', 'large', 'xlarge'
num_classes: número de classes para classificação
fractal_pattern: tipo de padrão fractal a ser usado
"""
configs = {
'small': {
'fractal_levels': [2, 3],
'base_channels': 32,
'pattern_resolution': 16
},
'medium': {
'fractal_levels': [2, 3, 4],
'base_channels': 64,
'pattern_resolution': 32
},
'large': {
'fractal_levels': [2, 3, 4, 5],
'base_channels': 96,
'pattern_resolution': 64
},
'xlarge': {
'fractal_levels': [3, 4, 5, 6],
'base_channels': 128,
'pattern_resolution': 128
}
}
config = configs.get(model_size, configs['medium'])
return FractalBrainNet(
num_classes=num_classes,
fractal_levels=config['fractal_levels'],
base_channels=config['base_channels'],
fractal_pattern_type=fractal_pattern,
pattern_resolution=config['pattern_resolution']
)
# Demonstração e teste
if __name__ == "__main__":
print("=== FractalBrainNet - Implementação Avançada ===")
print("Baseada no artigo de Jose R. F. Junior (2024)")
print()
# Criar modelo com diferentes padrões fractais
models = {
'Mandelbrot': create_fractal_brain_net('medium', 10, FractalPatternType.MANDELBROT),
'Sierpinski': create_fractal_brain_net('medium', 10, FractalPatternType.SIERPINSKI),
'Julia': create_fractal_brain_net('medium', 10, FractalPatternType.JULIA)
}
# Teste com entrada dummy
dummy_input = torch.randn(2, 3, 64, 64)
for name, model in models.items():
print(f"\n=== Modelo com padrão {name} ===")
# Forward pass normal
output = model(dummy_input)
print(f"Output shape: {output.shape}")
# Análise de padrões fractais emergentes
analysis = model.analyze_fractal_patterns(dummy_input)
print(f"Níveis de atenção capturados: {len(analysis['attention_maps'])}")
print(f"Complexidade dos padrões: {analysis['pattern_complexity']}")
print(f"Organização hierárquica: {analysis['hierarchical_organization']}")
# Estatísticas do modelo
total_params = sum(p.numel() for p in model.parameters())
print(f"Parâmetros totais: {total_params:,}")
print("\n=== FractalBrainNet criada com sucesso! ===")
print("Esta implementação incorpora:")
print("- Padrões fractais (Mandelbrot, Sierpinski, Julia)")
print("- Simulação de dinâmicas cerebrais")
print("- Processamento hierárquico e multi-escala")
print("- Mecanismos de atenção inspirados no cérebro")
print("- Capacidade de aprendizado contínuo")
print("- Análise de padrões emergentes")
"""
# Criar modelo com padrão Mandelbrot
model = create_fractal_brain_net('large', num_classes=1000,
fractal_pattern=FractalPatternType.MANDELBROT)
# Forward pass normal
output = model(input_tensor)
# Análise de padrões emergentes
analysis = model.analyze_fractal_patterns(input_tensor)
print("Complexidade dos padrões:", analysis['pattern_complexity'])
print("Organização hierárquica:", analysis['hierarchical_organization'])
""" |