File size: 22,780 Bytes
f6ded1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import math
from typing import Optional, List, Tuple, Dict, Callable
from enum import Enum

class FractalPatternType(Enum):
    """Tipos de padrões fractais suportados pela FractalBrainNet"""
    MANDELBROT = "mandelbrot"
    SIERPINSKI = "sierpinski"
    JULIA = "julia"
    CANTOR = "cantor"
    DRAGON_CURVE = "dragon_curve"

class FractalPatternGenerator:
    """

    Gerador de padrões fractais para definir as regras de conexão

    entre neurônios na FractalBrainNet.

    """
    
    @staticmethod
    def mandelbrot_connectivity(width: int, height: int, max_iter: int = 100) -> torch.Tensor:
        """

        Gera matriz de conectividade baseada no conjunto de Mandelbrot.

        Valores mais altos indicam conexões mais fortes.

        """
        x = torch.linspace(-2.5, 1.5, width)
        y = torch.linspace(-1.5, 1.5, height)
        X, Y = torch.meshgrid(x, y, indexing='ij')
        c = X + 1j * Y
        z = torch.zeros_like(c)
        
        connectivity = torch.zeros(width, height)
        
        for i in range(max_iter):
            mask = torch.abs(z) <= 2
            z[mask] = z[mask] ** 2 + c[mask]
            connectivity[mask] += 1
        
        # Normalizar para [0, 1]
        connectivity = connectivity / max_iter
        return connectivity
    
    @staticmethod
    def sierpinski_connectivity(size: int, iterations: int = 5) -> torch.Tensor:
        """

        Gera matriz de conectividade baseada no triângulo de Sierpinski.

        """
        pattern = torch.zeros(size, size)
        pattern[0, size//2] = 1.0
        
        for _ in range(iterations):
            new_pattern = torch.zeros_like(pattern)
            for i in range(size-1):
                for j in range(size-1):
                    if pattern[i, j] > 0:
                        # Regra do triângulo de Sierpinski
                        if i+1 < size and j > 0:
                            new_pattern[i+1, j-1] = 1.0
                        if i+1 < size and j+1 < size:
                            new_pattern[i+1, j+1] = 1.0
            pattern = torch.maximum(pattern, new_pattern)
        
        return pattern
    
    @staticmethod
    def julia_connectivity(width: int, height: int, c_real: float = -0.7, 

                          c_imag: float = 0.27015, max_iter: int = 100) -> torch.Tensor:
        """

        Gera matriz de conectividade baseada no conjunto de Julia.

        """
        x = torch.linspace(-2, 2, width)
        y = torch.linspace(-2, 2, height)
        X, Y = torch.meshgrid(x, y, indexing='ij')
        z = X + 1j * Y
        c = complex(c_real, c_imag)
        
        connectivity = torch.zeros(width, height)
        
        for i in range(max_iter):
            mask = torch.abs(z) <= 2
            z[mask] = z[mask] ** 2 + c
            connectivity[mask] += 1
        
        connectivity = connectivity / max_iter
        return connectivity

class CerebralDynamicsModule(nn.Module):
    """

    Módulo que simula dinâmicas cerebrais através de processamento

    distribuído e paralelo, inspirado na organização hierárquica do cérebro.

    """
    
    def __init__(self, channels: int, fractal_pattern: torch.Tensor):
        super().__init__()
        self.channels = channels
        self.fractal_pattern = nn.Parameter(fractal_pattern, requires_grad=False)
        
        # Múltiplas escalas de processamento (simulando diferentes frequências cerebrais)
        self.alpha_processing = nn.Conv2d(channels, channels//4, 1)  # 8-12 Hz
        self.beta_processing = nn.Conv2d(channels, channels//4, 1)   # 13-30 Hz
        self.gamma_processing = nn.Conv2d(channels, channels//4, 1)  # 30-100 Hz
        self.theta_processing = nn.Conv2d(channels, channels//4, 1)  # 4-8 Hz
        
        # Integração das diferentes escalas
        self.integration = nn.Conv2d(channels, channels, 1)
        self.normalization = nn.LayerNorm([channels])
        
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        batch_size, channels, height, width = x.shape
        
        # Aplicar padrão fractal como máscara de atenção
        if self.fractal_pattern.shape[-2:] != (height, width):
            fractal_mask = F.interpolate(
                self.fractal_pattern.unsqueeze(0).unsqueeze(0), 
                size=(height, width), mode='bilinear', align_corners=False
            ).squeeze()
        else:
            fractal_mask = self.fractal_pattern
        
        # Processamento em múltiplas escalas (simulando bandas de frequência cerebral)
        alpha = self.alpha_processing(x) * fractal_mask.unsqueeze(0).unsqueeze(0)
        beta = self.beta_processing(x) * (1 - fractal_mask.unsqueeze(0).unsqueeze(0))
        gamma = self.gamma_processing(x) * fractal_mask.unsqueeze(0).unsqueeze(0) * 0.5
        theta = self.theta_processing(x) * torch.sin(fractal_mask * math.pi).unsqueeze(0).unsqueeze(0)
        
        # Combinar diferentes escalas
        combined = torch.cat([alpha, beta, gamma, theta], dim=1)
        integrated = self.integration(combined)
        
        # Normalização adaptativa
        integrated = integrated.permute(0, 2, 3, 1)
        integrated = self.normalization(integrated)
        integrated = integrated.permute(0, 3, 1, 2)
        
        return integrated + x  # Conexão residual

class FractalNeuralBlock(nn.Module):
    """

    Bloco neural fractal que implementa a regra de expansão fractal

    com dinâmicas cerebrais integradas.

    """
    
    def __init__(self, level: int, in_channels: int, out_channels: int,

                 fractal_pattern: torch.Tensor, drop_path_prob: float = 0.1):
        super().__init__()
        self.level = level
        
        if level == 1:
            # Caso base com dinâmicas cerebrais
            self.base_conv = nn.Conv2d(in_channels, out_channels, 3, padding=1)
            self.cerebral_dynamics = CerebralDynamicsModule(out_channels, fractal_pattern)
            self.activation = nn.GELU()  # GELU para maior expressividade
            self.norm = nn.BatchNorm2d(out_channels)
        else:
            # Estrutura recursiva fractal
            self.deep_branch = nn.Sequential(
                FractalNeuralBlock(level-1, in_channels, out_channels, fractal_pattern, drop_path_prob),
                FractalNeuralBlock(level-1, out_channels, out_channels, fractal_pattern, drop_path_prob)
            )
            
            self.shallow_branch = nn.Sequential(
                nn.Conv2d(in_channels, out_channels, 3, padding=1),
                CerebralDynamicsModule(out_channels, fractal_pattern),
                nn.BatchNorm2d(out_channels),
                nn.GELU()
            )
            
            # Mecanismo de atenção fractal
            self.fractal_attention = nn.Sequential(
                nn.Conv2d(out_channels * 2, out_channels // 4, 1),
                nn.GELU(),
                nn.Conv2d(out_channels // 4, 2, 1),
                nn.Sigmoid()
            )
            
        self.drop_path = nn.Dropout2d(drop_path_prob) if drop_path_prob > 0 else nn.Identity()
    
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.level == 1:
            out = self.base_conv(x)
            out = self.norm(out)
            out = self.cerebral_dynamics(out)
            out = self.activation(out)
            return self.drop_path(out)
        else:
            # Processamento em ramos paralelos
            deep_out = self.deep_branch(x)
            shallow_out = self.shallow_branch(x)
            
            # Mecanismo de atenção para combinar ramos
            combined = torch.cat([deep_out, shallow_out], dim=1)
            attention_weights = self.fractal_attention(combined)
            
            # Combinar com pesos adaptativos
            alpha, beta = attention_weights.chunk(2, dim=1)
            result = alpha * deep_out + beta * shallow_out
            
            return self.drop_path(result)

class AdaptiveScaleProcessor(nn.Module):
    """

    Processador adaptativo que opera em múltiplas escalas,

    simulando a capacidade do cérebro de processar informações

    em diferentes níveis de abstração simultaneamente.

    """
    
    def __init__(self, channels: int):
        super().__init__()
        self.channels = channels
        
        # Diferentes escalas de processamento
        self.local_processor = nn.Conv2d(channels, channels, 1)
        self.regional_processor = nn.Conv2d(channels, channels, 3, padding=1)
        self.global_processor = nn.Conv2d(channels, channels, 5, padding=2)
        
        # Integração adaptativa
        self.scale_fusion = nn.Sequential(
            nn.Conv2d(channels * 3, channels, 1),
            nn.BatchNorm2d(channels),
            nn.GELU()
        )
        
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        local = self.local_processor(x)
        regional = self.regional_processor(x)
        global_proc = self.global_processor(x)
        
        # Combinar escalas
        multi_scale = torch.cat([local, regional, global_proc], dim=1)
        fused = self.scale_fusion(multi_scale)
        
        return fused + x

class FractalBrainNet(nn.Module):
    """

    FractalBrainNet: Rede neural que combina a profundidade das redes profundas

    com a complexidade e elegância dos fractais, capaz de emular dinâmicas cerebrais

    através de estruturas hierárquicas e auto-similares.

    

    Baseada no artigo de Jose R. F. Junior (2024).

    """
    
    def __init__(self, 

                 num_classes: int = 10,

                 in_channels: int = 3,

                 fractal_levels: List[int] = [2, 3, 4, 5],

                 base_channels: int = 64,

                 fractal_pattern_type: FractalPatternType = FractalPatternType.MANDELBROT,

                 pattern_resolution: int = 32,

                 drop_path_prob: float = 0.15,

                 enable_continuous_learning: bool = True):
        
        super().__init__()
        
        self.num_classes = num_classes
        self.fractal_levels = fractal_levels
        self.enable_continuous_learning = enable_continuous_learning
        
        # Gerar padrão fractal base
        self.fractal_pattern = self._generate_fractal_pattern(
            fractal_pattern_type, pattern_resolution
        )
        
        # Camada de entrada adaptativa
        self.stem = nn.Sequential(
            nn.Conv2d(in_channels, base_channels, 7, stride=2, padding=3),
            nn.BatchNorm2d(base_channels),
            nn.GELU(),
            AdaptiveScaleProcessor(base_channels)
        )
        
        # Blocos fractais neurais hierárquicos
        self.fractal_stages = nn.ModuleList()
        current_channels = base_channels
        
        for i, level in enumerate(fractal_levels):
            # Aumentar canais progressivamente
            stage_channels = base_channels * (2 ** min(i, 4))
            
            # Bloco fractal principal
            fractal_block = FractalNeuralBlock(
                level, current_channels, stage_channels, 
                self.fractal_pattern, drop_path_prob
            )
            
            # Processador multi-escala
            scale_processor = AdaptiveScaleProcessor(stage_channels)
            
            # Pooling adaptativo
            if i < len(fractal_levels) - 1:
                pooling = nn.Sequential(
                    nn.Conv2d(stage_channels, stage_channels, 3, stride=2, padding=1),
                    nn.BatchNorm2d(stage_channels),
                    nn.GELU()
                )
            else:
                pooling = nn.Identity()
            
            self.fractal_stages.append(nn.Sequential(
                fractal_block,
                scale_processor,
                pooling
            ))
            
            current_channels = stage_channels
        
        # Sistema de atenção global inspirado na atenção cerebral
        self.global_attention = nn.MultiheadAttention(
            current_channels, num_heads=8, batch_first=True
        )
        
        # Cabeça de classificação com aprendizado contínuo
        self.adaptive_pool = nn.AdaptiveAvgPool2d((1, 1))
        self.classifier = nn.Sequential(
            nn.Dropout(0.2),
            nn.Linear(current_channels, current_channels // 2),
            nn.GELU(),
            nn.Dropout(0.1),
            nn.Linear(current_channels // 2, num_classes)
        )
        
        # Módulo de meta-aprendizado para adaptação contínua
        if enable_continuous_learning:
            self.meta_learner = nn.Sequential(
                nn.Linear(current_channels, current_channels // 4),
                nn.GELU(),
                nn.Linear(current_channels // 4, current_channels)
            )
        
        self._initialize_weights()
    
    def _generate_fractal_pattern(self, pattern_type: FractalPatternType, 

                                 resolution: int) -> torch.Tensor:
        """Gera o padrão fractal base para a rede."""
        if pattern_type == FractalPatternType.MANDELBROT:
            return FractalPatternGenerator.mandelbrot_connectivity(resolution, resolution)
        elif pattern_type == FractalPatternType.SIERPINSKI:
            return FractalPatternGenerator.sierpinski_connectivity(resolution)
        elif pattern_type == FractalPatternType.JULIA:
            return FractalPatternGenerator.julia_connectivity(resolution, resolution)
        else:
            # Padrão padrão (Mandelbrot)
            return FractalPatternGenerator.mandelbrot_connectivity(resolution, resolution)
    
    def _initialize_weights(self):
        """Inicialização de pesos inspirada na neuroplasticidade."""
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                # Inicialização He com variação fractal
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, (nn.BatchNorm2d, nn.LayerNorm)):
                nn.init.constant_(m.weight, 1.0)
                nn.init.constant_(m.bias, 0.0)
            elif isinstance(m, nn.Linear):
                nn.init.trunc_normal_(m.weight, std=0.02)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
    
    def forward(self, x: torch.Tensor, 

                return_attention_maps: bool = False) -> torch.Tensor:
        """

        Forward pass com processamento hierárquico e dinâmicas cerebrais.

        """
        # Extração inicial de características
        x = self.stem(x)
        
        attention_maps = []
        
        # Processamento através dos estágios fractais
        for stage in self.fractal_stages:
            x = stage(x)
            
            if return_attention_maps:
                # Capturar mapas de atenção para análise
                attention_map = torch.mean(x, dim=1, keepdim=True)
                attention_maps.append(attention_map)
        
        # Pooling adaptativo global
        pooled = self.adaptive_pool(x)
        features = pooled.flatten(1)
        
        # Aplicar atenção global se habilitada
        if hasattr(self, 'global_attention'):
            # Reformatar para atenção multi-cabeça
            attn_input = features.unsqueeze(1)
            attended, _ = self.global_attention(attn_input, attn_input, attn_input)
            features = attended.squeeze(1)
        
        # Meta-aprendizado para adaptação contínua
        if self.enable_continuous_learning and hasattr(self, 'meta_learner'):
            meta_features = self.meta_learner(features)
            features = features + 0.1 * meta_features  # Residual meta-learning
        
        # Classificação final
        output = self.classifier(features)
        
        if return_attention_maps:
            return output, attention_maps
        return output
    
    def analyze_fractal_patterns(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
        """

        Analisa os padrões emergentes gerados pela estrutura fractal,

        conforme mencionado na metodologia do artigo.

        """
        self.eval()
        with torch.no_grad():
            _, attention_maps = self.forward(x, return_attention_maps=True)
            
            analysis = {
                'fractal_pattern': self.fractal_pattern,
                'attention_maps': attention_maps,
                'pattern_complexity': self._compute_pattern_complexity(attention_maps),
                'hierarchical_organization': self._analyze_hierarchical_organization(attention_maps)
            }
            
        return analysis
    
    def _compute_pattern_complexity(self, attention_maps: List[torch.Tensor]) -> List[float]:
        """Computa a complexidade dos padrões emergentes."""
        complexities = []
        for attention_map in attention_maps:
            # Usar entropia como medida de complexidade
            flat_map = attention_map.flatten()
            prob_dist = F.softmax(flat_map, dim=0)
            entropy = -torch.sum(prob_dist * torch.log(prob_dist + 1e-8))
            complexities.append(entropy.item())
        return complexities
    
    def _analyze_hierarchical_organization(self, attention_maps: List[torch.Tensor]) -> Dict[str, float]:
        """Analisa a organização hierárquica dos padrões."""
        if len(attention_maps) < 2:
            return {'correlation': 0.0, 'hierarchy_score': 0.0}
        
        # Correlação entre níveis hierárquicos
        correlations = []
        for i in range(len(attention_maps) - 1):
            map1 = attention_maps[i].flatten()
            map2 = F.interpolate(attention_maps[i+1], size=attention_maps[i].shape[-2:], 
                               mode='bilinear', align_corners=False).flatten()
            correlation = torch.corrcoef(torch.stack([map1, map2]))[0, 1]
            correlations.append(correlation.item())
        
        avg_correlation = sum(correlations) / len(correlations)
        hierarchy_score = 1.0 - avg_correlation  # Maior diversidade = maior hierarquia
        
        return {
            'correlation': avg_correlation,
            'hierarchy_score': hierarchy_score
        }

# Função para criar modelos FractalBrainNet pré-configurados
def create_fractal_brain_net(model_size: str = 'medium',

                           num_classes: int = 10,

                           fractal_pattern: FractalPatternType = FractalPatternType.MANDELBROT) -> FractalBrainNet:
    """

    Cria modelos FractalBrainNet pré-configurados inspirados no artigo de Jose R. F. Junior.

    

    Args:

        model_size: 'small', 'medium', 'large', 'xlarge'

        num_classes: número de classes para classificação

        fractal_pattern: tipo de padrão fractal a ser usado

    """
    configs = {
        'small': {
            'fractal_levels': [2, 3],
            'base_channels': 32,
            'pattern_resolution': 16
        },
        'medium': {
            'fractal_levels': [2, 3, 4],
            'base_channels': 64,
            'pattern_resolution': 32
        },
        'large': {
            'fractal_levels': [2, 3, 4, 5],
            'base_channels': 96,
            'pattern_resolution': 64
        },
        'xlarge': {
            'fractal_levels': [3, 4, 5, 6],
            'base_channels': 128,
            'pattern_resolution': 128
        }
    }
    
    config = configs.get(model_size, configs['medium'])
    
    return FractalBrainNet(
        num_classes=num_classes,
        fractal_levels=config['fractal_levels'],
        base_channels=config['base_channels'],
        fractal_pattern_type=fractal_pattern,
        pattern_resolution=config['pattern_resolution']
    )

# Demonstração e teste
if __name__ == "__main__":
    print("=== FractalBrainNet - Implementação Avançada ===")
    print("Baseada no artigo de Jose R. F. Junior (2024)")
    print()
    
    # Criar modelo com diferentes padrões fractais
    models = {
        'Mandelbrot': create_fractal_brain_net('medium', 10, FractalPatternType.MANDELBROT),
        'Sierpinski': create_fractal_brain_net('medium', 10, FractalPatternType.SIERPINSKI),
        'Julia': create_fractal_brain_net('medium', 10, FractalPatternType.JULIA)
    }
    
    # Teste com entrada dummy
    dummy_input = torch.randn(2, 3, 64, 64)
    
    for name, model in models.items():
        print(f"\n=== Modelo com padrão {name} ===")
        
        # Forward pass normal
        output = model(dummy_input)
        print(f"Output shape: {output.shape}")
        
        # Análise de padrões fractais emergentes
        analysis = model.analyze_fractal_patterns(dummy_input)
        print(f"Níveis de atenção capturados: {len(analysis['attention_maps'])}")
        print(f"Complexidade dos padrões: {analysis['pattern_complexity']}")
        print(f"Organização hierárquica: {analysis['hierarchical_organization']}")
        
        # Estatísticas do modelo
        total_params = sum(p.numel() for p in model.parameters())
        print(f"Parâmetros totais: {total_params:,}")
    
    print("\n=== FractalBrainNet criada com sucesso! ===")
    print("Esta implementação incorpora:")
    print("- Padrões fractais (Mandelbrot, Sierpinski, Julia)")
    print("- Simulação de dinâmicas cerebrais")
    print("- Processamento hierárquico e multi-escala")
    print("- Mecanismos de atenção inspirados no cérebro")
    print("- Capacidade de aprendizado contínuo")
    print("- Análise de padrões emergentes")


"""

# Criar modelo com padrão Mandelbrot

model = create_fractal_brain_net('large', num_classes=1000, 

                                fractal_pattern=FractalPatternType.MANDELBROT)



# Forward pass normal

output = model(input_tensor)



# Análise de padrões emergentes

analysis = model.analyze_fractal_patterns(input_tensor)

print("Complexidade dos padrões:", analysis['pattern_complexity'])

print("Organização hierárquica:", analysis['hierarchical_organization'])

"""