File size: 27,636 Bytes
2bbf6b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 |
# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Any, Callable, Dict, List, Optional, Union
import numpy as np
import torch
from diffusers.image_processor import PipelineImageInput
from diffusers.utils import (
USE_PEFT_BACKEND,
is_torch_xla_available,
logging,
replace_example_docstring,
scale_lora_layers,
unscale_lora_layers,
)
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
from diffusers.models.controlnet_flux import FluxControlNetModel, FluxMultiControlNetModel
from diffusers.pipelines.flux.pipeline_flux_controlnet import *
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__)
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import FluxImg2ImgPipeline
>>> from diffusers.utils import load_image
>>> device = "cuda"
>>> pipe = FluxImg2ImgPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
>>> pipe = pipe.to(device)
>>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
>>> init_image = load_image(url).resize((1024, 1024))
>>> prompt = "cat wizard, gandalf, lord of the rings, detailed, fantasy, cute, adorable, Pixar, Disney, 8k"
>>> images = pipe(
... prompt=prompt, image=init_image, num_inference_steps=4, strength=0.95, guidance_scale=0.0
... ).images[0]
```
"""
def calculate_shift(
image_seq_len,
base_seq_len: int = 256,
max_seq_len: int = 4096,
base_shift: float = 0.5,
max_shift: float = 1.15,
):
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
b = base_shift - m * base_seq_len
mu = image_seq_len * m + b
return mu
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class RegionalFluxAttnProcessor2_0:
def FluxAttnProcessor2_0_call(
self,
attn,
hidden_states,
encoder_hidden_states = None,
attention_mask = None,
image_rotary_emb = None,
) -> torch.FloatTensor:
batch_size, _, _ = hidden_states.shape
# `sample` projections.
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
if encoder_hidden_states is not None:
# `context` projections.
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
if attn.norm_added_k is not None:
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
# attention
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
if image_rotary_emb is not None:
from diffusers.models.embeddings import apply_rotary_emb
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
# apply mask on attention
hidden_states = torch.nn.functional.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attention_mask)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
if encoder_hidden_states is not None:
encoder_hidden_states, hidden_states = (
hidden_states[:, : encoder_hidden_states.shape[1]],
hidden_states[:, encoder_hidden_states.shape[1] :],
)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
return hidden_states, encoder_hidden_states
else:
return hidden_states
def __call__(
self,
attn,
hidden_states,
hidden_states_base = None,
encoder_hidden_states = None,
encoder_hidden_states_base = None,
attention_mask = None,
image_rotary_emb = None,
image_rotary_emb_base = None,
additional_kwargs = None,
base_ratio = None,
) -> torch.FloatTensor:
if base_ratio is not None:
attn_output_base = self.FluxAttnProcessor2_0_call(
attn=attn,
hidden_states=hidden_states_base if hidden_states_base is not None else hidden_states,
encoder_hidden_states=encoder_hidden_states_base,
attention_mask=None,
image_rotary_emb=image_rotary_emb_base,
)
if encoder_hidden_states_base is not None:
hidden_states_base, encoder_hidden_states_base = attn_output_base
else:
hidden_states_base = attn_output_base
attn_output = self.FluxAttnProcessor2_0_call(
attn=attn,
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=additional_kwargs['regional_attention_mask'].to(hidden_states.device) if base_ratio is not None and 'regional_attention_mask' in additional_kwargs else None,
image_rotary_emb=image_rotary_emb,
)
if encoder_hidden_states is not None:
hidden_states, encoder_hidden_states = attn_output
else:
hidden_states = attn_output
if encoder_hidden_states is not None:
if base_ratio is not None:
# merge hidden_states and hidden_states_base
hidden_states = hidden_states*(1-base_ratio) + hidden_states_base*base_ratio
return hidden_states, encoder_hidden_states, encoder_hidden_states_base
else: # both regional and base input are base prompts, skip the merge
return hidden_states, encoder_hidden_states, encoder_hidden_states
else:
if base_ratio is not None:
encoder_hidden_states, hidden_states = (
hidden_states[:, : additional_kwargs['encoder_seq_len']],
hidden_states[:, additional_kwargs['encoder_seq_len'] :],
)
encoder_hidden_states_base, hidden_states_base = (
hidden_states_base[:, : additional_kwargs["encoder_seq_len_base"]],
hidden_states_base[:, additional_kwargs["encoder_seq_len_base"] :],
)
# merge hidden_states and hidden_states_base
hidden_states = hidden_states*(1-base_ratio) + hidden_states_base*base_ratio
# concat back
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
hidden_states_base = torch.cat([encoder_hidden_states_base, hidden_states_base], dim=1)
return hidden_states, hidden_states_base
else: # both regional and base input are base prompts, skip the merge
return hidden_states, hidden_states
class RegionalFluxControlNetPipeline(FluxControlNetPipeline):
@torch.inference_mode()
def __call__(
self,
initial_latent: torch.FloatTensor = None,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
num_samples: int = 1,
width: int = 1024,
height: int = 1024,
strength: float = 1.0,
num_inference_steps: int = 25,
timesteps: List[int] = None,
mask_inject_steps: int = 5,
guidance_scale: float = 5.0,
control_image: PipelineImageInput = None,
control_mode: Optional[Union[int, List[int]]] = None,
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
):
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
self._guidance_scale = guidance_scale
device = self.transformer.device
# 3. Define call parameters
batch_size = num_samples if num_samples else prompt_embeds.shape[0]
# encode base prompt
(
prompt_embeds,
pooled_prompt_embeds,
text_ids,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=512,
lora_scale=None,
)
# define base mask and inputs
base_mask = torch.ones((height, width), device=device, dtype=self.transformer.dtype) # base mask uses the whole image mask
base_inputs = [(base_mask, prompt_embeds)]
# encode regional prompts, define regional inputs
regional_inputs = []
if 'regional_prompts' in joint_attention_kwargs and 'regional_masks' in joint_attention_kwargs:
for regional_prompt, regional_mask in zip(joint_attention_kwargs['regional_prompts'], joint_attention_kwargs['regional_masks']):
regional_prompt_embeds, regional_pooled_prompt_embeds, regional_text_ids = self.encode_prompt(
prompt=regional_prompt,
prompt_2=regional_prompt,
prompt_embeds=None,
pooled_prompt_embeds=None,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=512,
lora_scale=None,
)
regional_inputs.append((regional_mask, regional_prompt_embeds))
## prepare masks for regional control
conds = []
masks = []
H, W = height//(self.vae_scale_factor), width//(self.vae_scale_factor)
hidden_seq_len = H * W
for mask, cond in regional_inputs:
if mask is not None: # resize regional masks to image size, the flatten is to match the seq len
mask = torch.nn.functional.interpolate(mask[None, None, :, :], (H, W), mode='nearest-exact').flatten().unsqueeze(1).repeat(1, cond.size(1))
else:
mask = torch.ones((H*W, cond.size(1))).to(device=cond.device)
masks.append(mask)
conds.append(cond)
regional_embeds = torch.cat(conds, dim=1)
encoder_seq_len = regional_embeds.shape[1]
# initialize attention mask
regional_attention_mask = torch.zeros(
(encoder_seq_len + hidden_seq_len, encoder_seq_len + hidden_seq_len),
device=masks[0].device,
dtype=torch.bool
)
num_of_regions = len(masks)
each_prompt_seq_len = encoder_seq_len // num_of_regions
# initialize self-attended mask
self_attend_masks = torch.zeros((hidden_seq_len, hidden_seq_len), device=masks[0].device, dtype=torch.bool)
# initialize union mask
union_masks = torch.zeros((hidden_seq_len, hidden_seq_len), device=masks[0].device, dtype=torch.bool)
# handle each mask
for i in range(num_of_regions):
# txt attends to itself
regional_attention_mask[i*each_prompt_seq_len:(i+1)*each_prompt_seq_len, i*each_prompt_seq_len:(i+1)*each_prompt_seq_len] = True
# txt attends to corresponding regional img
regional_attention_mask[i*each_prompt_seq_len:(i+1)*each_prompt_seq_len, encoder_seq_len:] = masks[i].transpose(-1, -2)
# regional img attends to corresponding txt
regional_attention_mask[encoder_seq_len:, i*each_prompt_seq_len:(i+1)*each_prompt_seq_len] = masks[i]
# regional img attends to corresponding regional img
img_size_masks = masks[i][:, :1].repeat(1, hidden_seq_len)
img_size_masks_transpose = img_size_masks.transpose(-1, -2)
self_attend_masks = torch.logical_or(self_attend_masks,
torch.logical_and(img_size_masks, img_size_masks_transpose))
# update union
union_masks = torch.logical_or(union_masks,
torch.logical_or(img_size_masks, img_size_masks_transpose))
background_masks = torch.logical_not(union_masks)
background_and_self_attend_masks = torch.logical_or(background_masks, self_attend_masks)
regional_attention_mask[encoder_seq_len:, encoder_seq_len:] = background_and_self_attend_masks
## done prepare masks for regional control
# 4. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels // 4
latents, latent_image_ids = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
self.transformer.dtype,
device,
generator,
initial_latent,
)
# prepare control image
if isinstance(self.controlnet, FluxControlNetModel):
control_image = self.prepare_image(
image=control_image,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=self.transformer.dtype,
)
height, width = control_image.shape[-2:]
control_image = self.vae.encode(control_image).latent_dist.sample()
control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
height_control_image, width_control_image = control_image.shape[2:]
control_image = self._pack_latents(
control_image,
batch_size * num_images_per_prompt,
num_channels_latents,
height_control_image,
width_control_image,
)
if control_mode is not None:
control_mode = torch.tensor(control_mode).to(device, dtype=torch.long)
control_mode = control_mode.reshape([-1, 1])
elif isinstance(self.controlnet, FluxMultiControlNetModel):
control_images = []
for control_image_ in control_image:
control_image_ = self.prepare_image(
image=control_image_,
width=width,
height=height,
batch_size=batch_size * num_images_per_prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
dtype=self.transformer.dtype,
)
height, width = control_image_.shape[-2:]
control_image_ = self.vae.encode(control_image_).latent_dist.sample()
control_image_ = (control_image_ - self.vae.config.shift_factor) * self.vae.config.scaling_factor
height_control_image, width_control_image = control_image_.shape[2:]
control_image_ = self._pack_latents(
control_image_,
batch_size * num_images_per_prompt,
num_channels_latents,
height_control_image,
width_control_image,
)
control_images.append(control_image_)
control_image = control_images
control_mode_ = []
if isinstance(control_mode, list):
for cmode in control_mode:
if cmode is None:
control_mode_.append(-1)
else:
control_mode_.append(cmode)
control_mode = torch.tensor(control_mode_).to(device, dtype=torch.long)
control_mode = control_mode.reshape([-1, 1])
# 4.Prepare timesteps
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
image_seq_len = (int(height) // self.vae_scale_factor) * (int(width) // self.vae_scale_factor)
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
sigmas,
mu=mu,
)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
# 5.handle guidance
if self.transformer.config.guidance_embeds:
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
guidance = guidance.expand(latents.shape[0])
else:
guidance = None
# 6. Denoising loop
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
base_ratio = None
if i < mask_inject_steps:
chosen_prompt_embeds = regional_embeds
if i < 1:
base_ratio = joint_attention_kwargs['base_ratio'] #0.1
else:
base_ratio = joint_attention_kwargs['base_ratio']
else:
chosen_prompt_embeds = prompt_embeds
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latents.shape[0]).to(latents.dtype)
guidance = (
torch.tensor([guidance_scale], device=device) if self.transformer.config.guidance_embeds else None
)
guidance = guidance.expand(latents.shape[0]) if guidance is not None else None
controlnet_block_samples, controlnet_single_block_samples = self.controlnet(
hidden_states=latents,
controlnet_cond=control_image,
controlnet_mode=control_mode,
conditioning_scale=controlnet_conditioning_scale,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=None,
return_dict=False,
)
noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=chosen_prompt_embeds,
encoder_hidden_states_base=prompt_embeds,
controlnet_block_samples=controlnet_block_samples,
controlnet_single_block_samples=controlnet_single_block_samples,
base_ratio=base_ratio,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs={
'single_inject_blocks_interval': joint_attention_kwargs['single_inject_blocks_interval'] if 'single_inject_blocks_interval' in joint_attention_kwargs else len(self.transformer.single_transformer_blocks),
'double_inject_blocks_interval': joint_attention_kwargs['double_inject_blocks_interval'] if 'double_inject_blocks_interval' in joint_attention_kwargs else len(self.transformer.transformer_blocks),
'regional_attention_mask': regional_attention_mask if base_ratio is not None else None,
},
return_dict=False,
)[0]
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
if output_type == "latent":
image = latents
else:
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return FluxPipelineOutput(images=image) |