# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect from typing import Any, Callable, Dict, List, Optional, Union import numpy as np import torch from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast from diffusers.image_processor import PipelineImageInput, VaeImageProcessor from diffusers.loaders import FluxLoraLoaderMixin from diffusers.models.autoencoders import AutoencoderKL from diffusers.models.transformers import FluxTransformer2DModel from diffusers.schedulers import FlowMatchEulerDiscreteScheduler from diffusers.utils import ( USE_PEFT_BACKEND, is_torch_xla_available, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers, ) from diffusers.utils.torch_utils import randn_tensor from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput from diffusers.pipelines.flux.pipeline_flux import FluxPipeline import copy from tqdm.auto import trange import random from PIL import Image # pulid imports import torch.nn as nn import insightface import gc import cv2 from safetensors.torch import load_file from torchvision.transforms import InterpolationMode from torchvision.transforms.functional import normalize, resize from huggingface_hub import hf_hub_download, snapshot_download from insightface.app import FaceAnalysis from facexlib.parsing import init_parsing_model from facexlib.utils.face_restoration_helper import FaceRestoreHelper import sys sys.path.append('../PuLID') from pulid.encoders_flux import IDFormer, PerceiverAttentionCA from pulid.utils import img2tensor, tensor2img, resize_numpy_image_long from eva_clip import create_model_and_transforms from eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD if is_torch_xla_available(): import torch_xla.core.xla_model as xm XLA_AVAILABLE = True else: XLA_AVAILABLE = False logger = logging.get_logger(__name__) EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from diffusers import FluxImg2ImgPipeline >>> from diffusers.utils import load_image >>> device = "cuda" >>> pipe = FluxImg2ImgPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16) >>> pipe = pipe.to(device) >>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" >>> init_image = load_image(url).resize((1024, 1024)) >>> prompt = "cat wizard, gandalf, lord of the rings, detailed, fantasy, cute, adorable, Pixar, Disney, 8k" >>> images = pipe( ... prompt=prompt, image=init_image, num_inference_steps=4, strength=0.95, guidance_scale=0.0 ... ).images[0] ``` """ def calculate_shift( image_seq_len, base_seq_len: int = 256, max_seq_len: int = 4096, base_shift: float = 0.5, max_shift: float = 1.15, ): m = (max_shift - base_shift) / (max_seq_len - base_seq_len) b = base_shift - m * base_seq_len mu = image_seq_len * m + b return mu # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps def retrieve_timesteps( scheduler, num_inference_steps: Optional[int] = None, device: Optional[Union[str, torch.device]] = None, timesteps: Optional[List[int]] = None, sigmas: Optional[List[float]] = None, **kwargs, ): """ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. Args: scheduler (`SchedulerMixin`): The scheduler to get timesteps from. num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` must be `None`. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. timesteps (`List[int]`, *optional*): Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, `num_inference_steps` and `sigmas` must be `None`. sigmas (`List[float]`, *optional*): Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, `num_inference_steps` and `timesteps` must be `None`. Returns: `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the second element is the number of inference steps. """ if timesteps is not None and sigmas is not None: raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") if timesteps is not None: accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accepts_timesteps: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" timestep schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) elif sigmas is not None: accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accept_sigmas: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" sigmas schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) else: scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) timesteps = scheduler.timesteps return timesteps, num_inference_steps class RegionalFluxAttnProcessor2_0: def __init__(self): self.regional_mask = None def FluxAttnProcessor2_0_call( self, attn, hidden_states, encoder_hidden_states = None, attention_mask = None, image_rotary_emb = None, ) -> torch.FloatTensor: batch_size, _, _ = hidden_states.shape # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` if encoder_hidden_states is not None: # `context` projections. encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) # attention query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: from diffusers.models.embeddings import apply_rotary_emb query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) # apply mask on attention hidden_states = torch.nn.functional.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attention_mask) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return hidden_states, encoder_hidden_states else: return hidden_states def __call__( self, attn, hidden_states, hidden_states_base = None, encoder_hidden_states = None, encoder_hidden_states_base = None, attention_mask = None, image_rotary_emb = None, image_rotary_emb_base = None, additional_kwargs = None, base_ratio = None, ) -> torch.FloatTensor: if base_ratio is not None: attn_output_base = self.FluxAttnProcessor2_0_call( attn=attn, hidden_states=hidden_states_base if hidden_states_base is not None else hidden_states, encoder_hidden_states=encoder_hidden_states_base, attention_mask=None, image_rotary_emb=image_rotary_emb_base, ) if encoder_hidden_states_base is not None: hidden_states_base, encoder_hidden_states_base = attn_output_base else: hidden_states_base = attn_output_base # move regional mask to device if base_ratio is not None and 'regional_attention_mask' in additional_kwargs: if self.regional_mask is not None: regional_mask = self.regional_mask.to(hidden_states.device) else: self.regional_mask = additional_kwargs['regional_attention_mask'] regional_mask = self.regional_mask.to(hidden_states.device) else: regional_mask = None attn_output = self.FluxAttnProcessor2_0_call( attn=attn, hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=regional_mask, image_rotary_emb=image_rotary_emb, ) if encoder_hidden_states is not None: hidden_states, encoder_hidden_states = attn_output else: hidden_states = attn_output if encoder_hidden_states is not None: if base_ratio is not None: # merge hidden_states and hidden_states_base hidden_states = hidden_states*(1-base_ratio) + hidden_states_base*base_ratio return hidden_states, encoder_hidden_states, encoder_hidden_states_base else: # both regional and base input are base prompts, skip the merge return hidden_states, encoder_hidden_states, encoder_hidden_states else: if base_ratio is not None: encoder_hidden_states, hidden_states = ( hidden_states[:, : additional_kwargs['encoder_seq_len']], hidden_states[:, additional_kwargs['encoder_seq_len'] :], ) encoder_hidden_states_base, hidden_states_base = ( hidden_states_base[:, : additional_kwargs["encoder_seq_len_base"]], hidden_states_base[:, additional_kwargs["encoder_seq_len_base"] :], ) # merge hidden_states and hidden_states_base hidden_states = hidden_states*(1-base_ratio) + hidden_states_base*base_ratio # concat back hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) hidden_states_base = torch.cat([encoder_hidden_states_base, hidden_states_base], dim=1) return hidden_states, hidden_states_base else: # both regional and base input are base prompts, skip the merge return hidden_states, hidden_states class RegionalFluxPipeline_PULID(FluxPipeline): def load_pulid_models(self): double_interval = 2 single_interval = 4 num_ca = 0 onnx_provider = 'gpu' # init encoder self.pulid_encoder = IDFormer().to(self.device, self.transformer.dtype) num_ca = 19 // double_interval + 38 // single_interval if 19 % double_interval != 0: num_ca += 1 if 38 % single_interval != 0: num_ca += 1 self.pulid_ca = nn.ModuleList([ PerceiverAttentionCA().to(self.device, self.transformer.dtype) for _ in range(num_ca) ]) self.transformer.pulid_ca = self.pulid_ca self.transformer.pulid_double_interval = double_interval self.transformer.pulid_single_interval = single_interval # preprocessors # face align and parsing self.face_helper = FaceRestoreHelper( upscale_factor=1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', device=self.device, ) self.face_helper.face_parse = None self.face_helper.face_parse = init_parsing_model(model_name='bisenet', device=self.device) # clip-vit backbone model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', 'eva_clip', force_custom_clip=True) model = model.visual self.clip_vision_model = model.to(self.device, dtype=self.transformer.dtype) eva_transform_mean = getattr(self.clip_vision_model, 'image_mean', OPENAI_DATASET_MEAN) eva_transform_std = getattr(self.clip_vision_model, 'image_std', OPENAI_DATASET_STD) if not isinstance(eva_transform_mean, (list, tuple)): eva_transform_mean = (eva_transform_mean,) * 3 if not isinstance(eva_transform_std, (list, tuple)): eva_transform_std = (eva_transform_std,) * 3 self.eva_transform_mean = eva_transform_mean self.eva_transform_std = eva_transform_std # antelopev2 snapshot_download('DIAMONIK7777/antelopev2', local_dir='models/antelopev2') providers = ['CPUExecutionProvider'] if onnx_provider == 'cpu' \ else ['CUDAExecutionProvider', 'CPUExecutionProvider'] self.app = FaceAnalysis(name='antelopev2', root='.', providers=providers) self.app.prepare(ctx_id=0, det_size=(640, 640)) self.handler_ante = insightface.model_zoo.get_model('models/antelopev2/glintr100.onnx', providers=providers) self.handler_ante.prepare(ctx_id=0) gc.collect() torch.cuda.empty_cache() # self.load_pretrain() # other configs self.debug_img_list = [] def load_pretrain(self, pretrain_path=None): hf_hub_download('guozinan/PuLID', 'pulid_flux_v0.9.1.safetensors', local_dir='models') ckpt_path = 'models/pulid_flux_v0.9.1.safetensors' if pretrain_path is not None: ckpt_path = pretrain_path state_dict = load_file(ckpt_path) state_dict_dict = {} for k, v in state_dict.items(): module = k.split('.')[0] state_dict_dict.setdefault(module, {}) new_k = k[len(module) + 1:] state_dict_dict[module][new_k] = v for module in state_dict_dict: print(f'loading from {module}') getattr(self, module).load_state_dict(state_dict_dict[module], strict=True) del state_dict del state_dict_dict def to_gray(self, img): x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3] x = x.repeat(1, 3, 1, 1) return x @torch.no_grad() def get_id_embedding(self, image, cal_uncond=False): """ Args: image: path """ image = np.array(Image.open(image)) image = resize_numpy_image_long(image, 1024) self.face_helper.clean_all() self.debug_img_list = [] image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # get antelopev2 embedding face_info = self.app.get(image_bgr) if len(face_info) > 0: face_info = sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]))[ -1 ] # only use the maximum face id_ante_embedding = face_info['embedding'] self.debug_img_list.append( image[ int(face_info['bbox'][1]) : int(face_info['bbox'][3]), int(face_info['bbox'][0]) : int(face_info['bbox'][2]), ] ) else: id_ante_embedding = None # using facexlib to detect and align face self.face_helper.read_image(image_bgr) self.face_helper.get_face_landmarks_5(only_center_face=True) self.face_helper.align_warp_face() if len(self.face_helper.cropped_faces) == 0: raise RuntimeError('facexlib align face fail') align_face = self.face_helper.cropped_faces[0] # incase insightface didn't detect face if id_ante_embedding is None: print('fail to detect face using insightface, extract embedding on align face') id_ante_embedding = self.handler_ante.get_feat(align_face) id_ante_embedding = torch.from_numpy(id_ante_embedding).to(self.device, self.transformer.dtype) if id_ante_embedding.ndim == 1: id_ante_embedding = id_ante_embedding.unsqueeze(0) # parsing input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0 input = input.to(self.device) parsing_out = self.face_helper.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0] parsing_out = parsing_out.argmax(dim=1, keepdim=True) bg_label = [0, 16, 18, 7, 8, 9, 14, 15] bg = sum(parsing_out == i for i in bg_label).bool() white_image = torch.ones_like(input) # only keep the face features face_features_image = torch.where(bg, white_image, self.to_gray(input)) self.debug_img_list.append(tensor2img(face_features_image, rgb2bgr=False)) # transform img before sending to eva-clip-vit face_features_image = resize(face_features_image, self.clip_vision_model.image_size, InterpolationMode.BICUBIC) face_features_image = normalize(face_features_image, self.eva_transform_mean, self.eva_transform_std) id_cond_vit, id_vit_hidden = self.clip_vision_model( face_features_image.to(self.transformer.dtype), return_all_features=False, return_hidden=True, shuffle=False ) id_cond_vit_norm = torch.norm(id_cond_vit, 2, 1, True) id_cond_vit = torch.div(id_cond_vit, id_cond_vit_norm) id_cond = torch.cat([id_ante_embedding, id_cond_vit], dim=-1) id_embedding = self.pulid_encoder(id_cond, id_vit_hidden) if not cal_uncond: return id_embedding, None id_uncond = torch.zeros_like(id_cond) id_vit_hidden_uncond = [] for layer_idx in range(0, len(id_vit_hidden)): id_vit_hidden_uncond.append(torch.zeros_like(id_vit_hidden[layer_idx])) uncond_id_embedding = self.pulid_encoder(id_uncond, id_vit_hidden_uncond) return id_embedding, uncond_id_embedding @torch.inference_mode() def __call__( self, initial_latent: torch.FloatTensor = None, prompt: Union[str, List[str]] = None, prompt_2: Optional[Union[str, List[str]]] = None, num_samples: int = 1, width: int = 1024, height: int = 1024, strength: float = 1.0, num_inference_steps: int = 25, timesteps: List[int] = None, mask_inject_steps: int = 5, guidance_scale: float = 5.0, num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, joint_attention_kwargs: Optional[Dict[str, Any]] = None, output_type: Optional[str] = "pil", return_dict: bool = True, ): height = height or self.default_sample_size * self.vae_scale_factor width = width or self.default_sample_size * self.vae_scale_factor self._guidance_scale = guidance_scale device = self.transformer.device # 3. Define call parameters batch_size = num_samples if num_samples else prompt_embeds.shape[0] # encode base prompt ( prompt_embeds, pooled_prompt_embeds, text_ids, ) = self.encode_prompt( prompt=prompt, prompt_2=prompt_2, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, device=device, num_images_per_prompt=num_images_per_prompt, max_sequence_length=512, lora_scale=None, ) # define base mask and inputs base_mask = torch.ones((height, width), device=device, dtype=self.transformer.dtype) # base mask uses the whole image mask base_inputs = [(base_mask, prompt_embeds)] # encode regional prompts, define regional inputs regional_inputs = [] if 'regional_prompts' in joint_attention_kwargs and 'regional_masks' in joint_attention_kwargs: for regional_prompt, regional_mask in zip(joint_attention_kwargs['regional_prompts'], joint_attention_kwargs['regional_masks']): regional_prompt_embeds, regional_pooled_prompt_embeds, regional_text_ids = self.encode_prompt( prompt=regional_prompt, prompt_2=regional_prompt, prompt_embeds=None, pooled_prompt_embeds=None, device=device, num_images_per_prompt=num_images_per_prompt, max_sequence_length=512, lora_scale=None, ) regional_inputs.append((regional_mask, regional_prompt_embeds)) ## prepare masks for regional control conds = [] masks = [] H, W = height//(self.vae_scale_factor), width//(self.vae_scale_factor) hidden_seq_len = H * W for mask, cond in regional_inputs: if mask is not None: # resize regional masks to image size, the flatten is to match the seq len mask = torch.nn.functional.interpolate(mask[None, None, :, :], (H, W), mode='nearest-exact').flatten().unsqueeze(1).repeat(1, cond.size(1)) else: mask = torch.ones((H*W, cond.size(1))).to(device=cond.device) masks.append(mask) conds.append(cond) regional_embeds = torch.cat(conds, dim=1) encoder_seq_len = regional_embeds.shape[1] # initialize attention mask regional_attention_mask = torch.zeros( (encoder_seq_len + hidden_seq_len, encoder_seq_len + hidden_seq_len), device=masks[0].device, dtype=torch.bool ) num_of_regions = len(masks) each_prompt_seq_len = encoder_seq_len // num_of_regions # initialize self-attended mask self_attend_masks = torch.zeros((hidden_seq_len, hidden_seq_len), device=masks[0].device, dtype=torch.bool) # initialize union mask union_masks = torch.zeros((hidden_seq_len, hidden_seq_len), device=masks[0].device, dtype=torch.bool) # handle each mask for i in range(num_of_regions): # txt attends to itself regional_attention_mask[i*each_prompt_seq_len:(i+1)*each_prompt_seq_len, i*each_prompt_seq_len:(i+1)*each_prompt_seq_len] = True # txt attends to corresponding regional img regional_attention_mask[i*each_prompt_seq_len:(i+1)*each_prompt_seq_len, encoder_seq_len:] = masks[i].transpose(-1, -2) # regional img attends to corresponding txt regional_attention_mask[encoder_seq_len:, i*each_prompt_seq_len:(i+1)*each_prompt_seq_len] = masks[i] # regional img attends to corresponding regional img img_size_masks = masks[i][:, :1].repeat(1, hidden_seq_len) img_size_masks_transpose = img_size_masks.transpose(-1, -2) self_attend_masks = torch.logical_or(self_attend_masks, torch.logical_and(img_size_masks, img_size_masks_transpose)) # update union union_masks = torch.logical_or(union_masks, torch.logical_or(img_size_masks, img_size_masks_transpose)) background_masks = torch.logical_not(union_masks) background_and_self_attend_masks = torch.logical_or(background_masks, self_attend_masks) regional_attention_mask[encoder_seq_len:, encoder_seq_len:] = background_and_self_attend_masks ## done prepare masks for regional control ## prepare id embeddings if 'id_image_paths' in joint_attention_kwargs: id_embeddings = [] for id_image_path in joint_attention_kwargs['id_image_paths']: id_embedding, _ = self.get_id_embedding(id_image_path, cal_uncond=False) id_embeddings.append(id_embedding) id_masks = [] for id_mask in joint_attention_kwargs['id_masks']: id_mask = torch.nn.functional.interpolate(id_mask[None, None, :, :], (H, W), mode='nearest-exact').flatten() id_masks.append(id_mask) else: id_embeddings = None id_masks = None # 4. Prepare latent variables num_channels_latents = self.transformer.config.in_channels // 4 latents, latent_image_ids = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, self.transformer.dtype, device, generator, initial_latent, ) # 4.Prepare timesteps sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) image_seq_len = (int(height) // self.vae_scale_factor) * (int(width) // self.vae_scale_factor) mu = calculate_shift( image_seq_len, self.scheduler.config.base_image_seq_len, self.scheduler.config.max_image_seq_len, self.scheduler.config.base_shift, self.scheduler.config.max_shift, ) timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, timesteps, sigmas, mu=mu, ) num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) self._num_timesteps = len(timesteps) # 5.handle guidance if self.transformer.config.guidance_embeds: guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) guidance = guidance.expand(latents.shape[0]) else: guidance = None # 6. Denoising loop with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if i < mask_inject_steps: chosen_prompt_embeds = regional_embeds base_ratio = joint_attention_kwargs['base_ratio'] else: chosen_prompt_embeds = prompt_embeds base_ratio = None # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = t.expand(latents.shape[0]).to(latents.dtype) noise_pred = self.transformer( hidden_states=latents, timestep=timestep / 1000, guidance=guidance, pooled_projections=pooled_prompt_embeds, encoder_hidden_states=chosen_prompt_embeds, encoder_hidden_states_base=prompt_embeds, base_ratio=base_ratio, txt_ids=text_ids, img_ids=latent_image_ids, joint_attention_kwargs={ 'single_inject_blocks_interval': joint_attention_kwargs['single_inject_blocks_interval'] if 'single_inject_blocks_interval' in joint_attention_kwargs else len(self.transformer.single_transformer_blocks), 'double_inject_blocks_interval': joint_attention_kwargs['double_inject_blocks_interval'] if 'double_inject_blocks_interval' in joint_attention_kwargs else len(self.transformer.transformer_blocks), 'regional_attention_mask': regional_attention_mask if base_ratio is not None else None, 'id_embeddings': id_embeddings, 'id_weights': joint_attention_kwargs['id_weights'] if 'id_weights' in joint_attention_kwargs else None, 'id_masks': id_masks, }, return_dict=False, )[0] # compute the previous noisy sample x_t -> x_t-1 latents_dtype = latents.dtype latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] if latents.dtype != latents_dtype: if torch.backends.mps.is_available(): # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 latents = latents.to(latents_dtype) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if XLA_AVAILABLE: xm.mark_step() if output_type == "latent": image = latents else: latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor image = self.vae.decode(latents, return_dict=False)[0] image = self.image_processor.postprocess(image, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return FluxPipelineOutput(images=image)