Leonardo6's picture
Add files using upload-large-folder tool
7dce762 verified
/*!
**************************************************************************************************
* InternImage
* Copyright (c) 2022 OpenGVLab
* Licensed under The MIT License [see LICENSE for details]
**************************************************************************************************
* Modified from
*https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
**************************************************************************************************
*/
#pragma once
#include "cpu/dcnv3_cpu.h"
#ifdef WITH_CUDA
#include "cuda/dcnv3_cuda.h"
#endif
at::Tensor dcnv3_forward(const at::Tensor &input, const at::Tensor &offset,
const at::Tensor &mask, const int kernel_h,
const int kernel_w, const int stride_h,
const int stride_w, const int pad_h, const int pad_w,
const int dilation_h, const int dilation_w,
const int group, const int group_channels,
const float offset_scale, const int im2col_step) {
if (input.type().is_cuda()) {
#ifdef WITH_CUDA
return dcnv3_cuda_forward(input, offset, mask, kernel_h, kernel_w,
stride_h, stride_w, pad_h, pad_w, dilation_h,
dilation_w, group, group_channels,
offset_scale, im2col_step);
#else
AT_ERROR("Not compiled with GPU support");
#endif
}
AT_ERROR("Not implemented on the CPU");
}
std::vector<at::Tensor>
dcnv3_backward(const at::Tensor &input, const at::Tensor &offset,
const at::Tensor &mask, const int kernel_h, const int kernel_w,
const int stride_h, const int stride_w, const int pad_h,
const int pad_w, const int dilation_h, const int dilation_w,
const int group, const int group_channels,
const float offset_scale, const at::Tensor &grad_output,
const int im2col_step) {
if (input.type().is_cuda()) {
#ifdef WITH_CUDA
return dcnv3_cuda_backward(input, offset, mask, kernel_h, kernel_w,
stride_h, stride_w, pad_h, pad_w, dilation_h,
dilation_w, group, group_channels,
offset_scale, grad_output, im2col_step);
#else
AT_ERROR("Not compiled with GPU support");
#endif
}
AT_ERROR("Not implemented on the CPU");
}