|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import os |
|
import os.path as osp |
|
import shutil |
|
import time |
|
import warnings |
|
|
|
import mmcv |
|
import mmcv_custom |
|
import mmseg_custom |
|
import torch |
|
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel |
|
from mmcv.runner import (get_dist_info, init_dist, load_checkpoint, |
|
load_state_dict, wrap_fp16_model) |
|
from mmcv.utils import DictAction |
|
from mmseg.apis import multi_gpu_test, single_gpu_test |
|
from mmseg.datasets import build_dataloader, build_dataset |
|
from mmseg.models import build_segmentor |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser( |
|
description='mmseg test (and eval) a model') |
|
parser.add_argument('config', help='test config file path') |
|
parser.add_argument('checkpoint', help='checkpoint file') |
|
parser.add_argument( |
|
'--work-dir', |
|
help=('if specified, the evaluation metric results will be dumped' |
|
'into the directory as json')) |
|
parser.add_argument( |
|
'--aug-test', action='store_true', help='Use Flip and Multi scale aug') |
|
parser.add_argument('--out', help='output result file in pickle format') |
|
parser.add_argument('--dir-name', help='dir name') |
|
parser.add_argument( |
|
'--format-only', |
|
action='store_true', |
|
help='Format the output results without perform evaluation. It is' |
|
'useful when you want to format the result to a specific format and ' |
|
'submit it to the test server') |
|
parser.add_argument( |
|
'--eval', |
|
type=str, |
|
nargs='+', |
|
help='evaluation metrics, which depends on the dataset, e.g., "mIoU"' |
|
' for generic datasets, and "cityscapes" for Cityscapes') |
|
parser.add_argument('--show', action='store_true', help='show results') |
|
parser.add_argument( |
|
'--show-dir', help='directory where painted images will be saved') |
|
parser.add_argument( |
|
'--gpu-collect', |
|
action='store_true', |
|
help='whether to use gpu to collect results.') |
|
parser.add_argument( |
|
'--tmpdir', |
|
help='tmp directory used for collecting results from multiple ' |
|
'workers, available when gpu_collect is not specified') |
|
parser.add_argument( |
|
'--options', |
|
nargs='+', |
|
action=DictAction, |
|
help="--options is deprecated in favor of --cfg_options' and it will " |
|
'not be supported in version v0.22.0. Override some settings in the ' |
|
'used config, the key-value pair in xxx=yyy format will be merged ' |
|
'into config file. If the value to be overwritten is a list, it ' |
|
'should be like key="[a,b]" or key=a,b It also allows nested ' |
|
'list/tuple values, e.g. key="[(a,b),(c,d)]" Note that the quotation ' |
|
'marks are necessary and that no white space is allowed.') |
|
parser.add_argument( |
|
'--cfg-options', |
|
nargs='+', |
|
action=DictAction, |
|
help='override some settings in the used config, the key-value pair ' |
|
'in xxx=yyy format will be merged into config file. If the value to ' |
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' |
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' |
|
'Note that the quotation marks are necessary and that no white space ' |
|
'is allowed.') |
|
parser.add_argument( |
|
'--eval-options', |
|
nargs='+', |
|
action=DictAction, |
|
help='custom options for evaluation') |
|
parser.add_argument( |
|
'--launcher', |
|
choices=['none', 'pytorch', 'slurm', 'mpi'], |
|
default='none', |
|
help='job launcher') |
|
parser.add_argument( |
|
'--opacity', |
|
type=float, |
|
default=0.5, |
|
help='Opacity of painted segmentation map. In (0, 1] range.') |
|
parser.add_argument('--local_rank', type=int, default=0) |
|
args = parser.parse_args() |
|
if 'LOCAL_RANK' not in os.environ: |
|
os.environ['LOCAL_RANK'] = str(args.local_rank) |
|
|
|
if args.options and args.cfg_options: |
|
raise ValueError( |
|
'--options and --cfg-options cannot be both ' |
|
'specified, --options is deprecated in favor of --cfg-options. ' |
|
'--options will not be supported in version v0.22.0.') |
|
if args.options: |
|
warnings.warn('--options is deprecated in favor of --cfg-options. ' |
|
'--options will not be supported in version v0.22.0.') |
|
args.cfg_options = args.options |
|
|
|
return args |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
assert args.out or args.eval or args.format_only or args.show \ |
|
or args.show_dir, \ |
|
('Please specify at least one operation (save/eval/format/show the ' |
|
'results / save the results) with the argument "--out", "--eval"' |
|
', "--format-only", "--show" or "--show-dir"') |
|
|
|
if args.eval and args.format_only: |
|
raise ValueError('--eval and --format_only cannot be both specified') |
|
|
|
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')): |
|
raise ValueError('The output file must be a pkl file.') |
|
|
|
cfg = mmcv.Config.fromfile(args.config) |
|
if args.cfg_options is not None: |
|
cfg.merge_from_dict(args.cfg_options) |
|
|
|
if cfg.get('cudnn_benchmark', False): |
|
torch.backends.cudnn.benchmark = True |
|
if args.aug_test: |
|
|
|
cfg.data.test.pipeline[1].img_ratios = [ |
|
0.5, 0.75, 1.0, 1.25, 1.5, 1.75 |
|
] |
|
cfg.data.test.pipeline[1].flip = True |
|
cfg.model.pretrained = None |
|
cfg.data.test.test_mode = True |
|
|
|
|
|
if args.launcher == 'none': |
|
distributed = False |
|
else: |
|
distributed = True |
|
init_dist(args.launcher, **cfg.dist_params) |
|
|
|
rank, _ = get_dist_info() |
|
|
|
if args.work_dir is not None and rank == 0: |
|
mmcv.mkdir_or_exist(osp.abspath(args.work_dir)) |
|
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) |
|
if args.aug_test: |
|
json_file = osp.join(args.work_dir, |
|
f'eval_multi_scale_{timestamp}.json') |
|
else: |
|
json_file = osp.join(args.work_dir, |
|
f'eval_single_scale_{timestamp}.json') |
|
elif rank == 0: |
|
work_dir = osp.join('./work_dirs', |
|
osp.splitext(osp.basename(args.config))[0]) |
|
mmcv.mkdir_or_exist(osp.abspath(work_dir)) |
|
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) |
|
if args.aug_test: |
|
json_file = osp.join(work_dir, |
|
f'eval_multi_scale_{timestamp}.json') |
|
else: |
|
json_file = osp.join(work_dir, |
|
f'eval_single_scale_{timestamp}.json') |
|
|
|
|
|
|
|
dataset = build_dataset(cfg.data.test) |
|
data_loader = build_dataloader( |
|
dataset, |
|
samples_per_gpu=1, |
|
workers_per_gpu=cfg.data.workers_per_gpu, |
|
dist=distributed, |
|
shuffle=False) |
|
|
|
|
|
cfg.model.train_cfg = None |
|
model = build_segmentor(cfg.model, test_cfg=cfg.get('test_cfg')) |
|
|
|
fp16_cfg = cfg.get('fp16', None) |
|
if fp16_cfg is not None: |
|
wrap_fp16_model(model) |
|
checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') |
|
|
|
if hasattr(model, 'module'): |
|
load_state_dict(model.module, checkpoint['state_dict'], strict=False) |
|
else: |
|
load_state_dict(model, checkpoint['state_dict'], strict=False) |
|
|
|
if 'CLASSES' in checkpoint.get('meta', {}): |
|
model.CLASSES = checkpoint['meta']['CLASSES'] |
|
else: |
|
print('"CLASSES" not found in meta, use dataset.CLASSES instead') |
|
model.CLASSES = dataset.CLASSES |
|
if 'PALETTE' in checkpoint.get('meta', {}): |
|
model.PALETTE = checkpoint['meta']['PALETTE'] |
|
else: |
|
print('"PALETTE" not found in meta, use dataset.PALETTE instead') |
|
model.PALETTE = dataset.PALETTE |
|
|
|
|
|
torch.cuda.empty_cache() |
|
eval_kwargs = {} if args.eval_options is None else args.eval_options |
|
|
|
|
|
efficient_test = eval_kwargs.get('efficient_test', False) |
|
if efficient_test: |
|
warnings.warn( |
|
'``efficient_test=True`` does not have effect in tools/test.py, ' |
|
'the evaluation and format results are CPU memory efficient by ' |
|
'default') |
|
|
|
eval_on_format_results = ( |
|
args.eval is not None and 'cityscapes' in args.eval) |
|
if eval_on_format_results: |
|
assert len(args.eval) == 1, 'eval on format results is not ' \ |
|
'applicable for metrics other than ' \ |
|
'cityscapes' |
|
if args.format_only or eval_on_format_results: |
|
if 'imgfile_prefix' in eval_kwargs: |
|
tmpdir = eval_kwargs['imgfile_prefix'] |
|
else: |
|
tmpdir = '.format_cityscapes' |
|
eval_kwargs.setdefault('imgfile_prefix', tmpdir) |
|
mmcv.mkdir_or_exist(tmpdir) |
|
else: |
|
tmpdir = None |
|
|
|
if not distributed: |
|
model = MMDataParallel(model, device_ids=[0]) |
|
results = single_gpu_test( |
|
model, |
|
data_loader, |
|
args.show, |
|
args.show_dir, |
|
False, |
|
args.opacity, |
|
pre_eval=args.eval is not None and not eval_on_format_results, |
|
format_only=args.format_only or eval_on_format_results, |
|
format_args=eval_kwargs) |
|
else: |
|
model = MMDistributedDataParallel( |
|
model.cuda(), |
|
device_ids=[torch.cuda.current_device()], |
|
broadcast_buffers=False) |
|
results = multi_gpu_test( |
|
model, |
|
data_loader, |
|
args.tmpdir, |
|
args.gpu_collect, |
|
False, |
|
pre_eval=args.eval is not None and not eval_on_format_results, |
|
format_only=args.format_only or eval_on_format_results, |
|
format_args=eval_kwargs) |
|
|
|
rank, _ = get_dist_info() |
|
if rank == 0: |
|
if args.out: |
|
warnings.warn( |
|
'The behavior of ``args.out`` has been changed since MMSeg ' |
|
'v0.16, the pickled outputs could be seg map as type of ' |
|
'np.array, pre-eval results or file paths for ' |
|
'``dataset.format_results()``.') |
|
print(f'\nwriting results to {args.out}') |
|
mmcv.dump(results, args.out) |
|
if args.eval: |
|
eval_kwargs.update(metric=args.eval) |
|
metric = dataset.evaluate(results, **eval_kwargs) |
|
metric_dict = dict(config=args.config, metric=metric) |
|
mmcv.dump(metric_dict, json_file, indent=4) |
|
if tmpdir is not None and eval_on_format_results: |
|
|
|
shutil.rmtree(tmpdir) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|