# Copyright (c) OpenMMLab. All rights reserved. import os import os.path as osp from argparse import ArgumentParser import cv2 import mmcv import mmcv_custom # noqa: F401,F403 import mmseg_custom # noqa: F401,F403 from mmcv.runner import load_checkpoint from mmseg.apis import inference_segmentor, init_segmentor, show_result_pyplot from mmseg.core import get_classes from mmseg.core.evaluation import get_palette def test_single_image(model, img_name, out_dir, color_palette, opacity): # check img_name is an image file or not assumed_imgformat = ('.png', '.jpg', '.jpeg', '.tiff', '.bmp', '.gif') if (not img_name.lower().endswith(assumed_imgformat)): print(f'Skip {img_name} because it is not an image file.') return result = inference_segmentor(model, img_name) # show the results if hasattr(model, 'module'): model = model.module img = model.show_result(img_name, result, palette=color_palette, show=False, opacity=opacity) # save the results mmcv.mkdir_or_exist(out_dir) out_path = osp.join(out_dir, osp.basename(img_name)) cv2.imwrite(out_path, img) print(f'Result is save at {out_path}') def main(): parser = ArgumentParser() parser.add_argument( 'img', help='Image file or a directory contains images') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument('--out', type=str, default='demo', help='out dir') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--palette', default='ade20k', choices=['ade20k', 'cityscapes', 'cocostuff'], help='Color palette used for segmentation map') parser.add_argument( '--opacity', type=float, default=0.5, help='Opacity of painted segmentation map. In (0, 1] range.') args = parser.parse_args() # build the model from a config file and a checkpoint file model = init_segmentor(args.config, checkpoint=None, device=args.device) checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu') if 'CLASSES' in checkpoint.get('meta', {}): model.CLASSES = checkpoint['meta']['CLASSES'] else: model.CLASSES = get_classes(args.palette) # check arg.img is directory of a single image. if osp.isdir(args.img): for img in sorted(os.listdir(args.img)): test_single_image(model, osp.join(args.img, img), args.out, get_palette(args.palette), args.opacity) else: test_single_image(model, args.img, args.out, get_palette(args.palette), args.opacity) if __name__ == '__main__': main()