# -------------------------------------------------------- # InternImage # Copyright (c) 2022 OpenGVLab # Licensed under The MIT License [see LICENSE for details] # -------------------------------------------------------- """ Mostly copy-paste from BEiT library: https://github.com/microsoft/unilm/blob/master/beit/semantic_segmentation/mmcv_custom/layer_decay_optimizer_constructor.py """ import json from mmcv.runner import (OPTIMIZER_BUILDERS, DefaultOptimizerConstructor, get_dist_info) from mmseg.utils import get_root_logger def get_num_layer_for_swin(var_name, num_max_layer, depths): if var_name.startswith('backbone.patch_embed'): return 0 elif var_name.startswith('decode_head.mask_embed'): return 0 elif var_name.startswith('decode_head.cls_embed'): return 0 elif var_name.startswith('decode_head.level_embed'): return 0 elif var_name.startswith('decode_head.query_embed'): return 0 elif var_name.startswith('decode_head.query_feat'): return 0 if var_name.startswith('backbone.cb_modules.0.patch_embed'): return 0 elif 'level_embeds' in var_name: return 0 elif var_name.startswith('backbone.layers') or var_name.startswith( 'backbone.levels'): if var_name.split('.')[3] not in ['downsample', 'norm']: stage_id = int(var_name.split('.')[2]) layer_id = int(var_name.split('.')[4]) # layers for Swin-Large: [2, 2, 18, 2] if stage_id == 0: return layer_id + 1 elif stage_id == 1: return layer_id + 1 + depths[0] elif stage_id == 2: return layer_id + 1 + depths[0] + depths[1] else: return layer_id + 1 + depths[0] + depths[1] + depths[2] else: stage_id = int(var_name.split('.')[2]) if stage_id == 0: return 1 + depths[0] elif stage_id == 1: return 1 + depths[0] + depths[1] elif stage_id == 2: return 1 + depths[0] + depths[1] + depths[2] else: return 1 + depths[0] + depths[1] + depths[2] else: return num_max_layer - 1 @OPTIMIZER_BUILDERS.register_module() class CustomLayerDecayOptimizerConstructor(DefaultOptimizerConstructor): def add_params(self, params, module, prefix='', is_dcn_module=None): """Add all parameters of module to the params list. The parameters of the given module will be added to the list of param groups, with specific rules defined by paramwise_cfg. Args: params (list[dict]): A list of param groups, it will be modified in place. module (nn.Module): The module to be added. prefix (str): The prefix of the module is_dcn_module (int|float|None): If the current module is a submodule of DCN, `is_dcn_module` will be passed to control conv_offset layer's learning rate. Defaults to None. """ parameter_groups = {} logger = get_root_logger() logger.info(self.paramwise_cfg) backbone_small_lr = self.paramwise_cfg.get('backbone_small_lr', False) dino_head = self.paramwise_cfg.get('dino_head', False) num_layers = self.paramwise_cfg.get('num_layers') + 2 layer_decay_rate = self.paramwise_cfg.get('layer_decay_rate') depths = self.paramwise_cfg.get('depths') offset_lr_scale = self.paramwise_cfg.get('offset_lr_scale', 1.0) logger.info('Build CustomLayerDecayOptimizerConstructor %f - %d' % (layer_decay_rate, num_layers)) weight_decay = self.base_wd for name, param in module.named_parameters(): if not param.requires_grad: continue # frozen weights if len(param.shape) == 1 or name.endswith('.bias') or \ 'relative_position' in name or \ 'norm' in name or\ 'sampling_offsets' in name: group_name = 'no_decay' this_weight_decay = 0. else: group_name = 'decay' this_weight_decay = weight_decay layer_id = get_num_layer_for_swin(name, num_layers, depths) if layer_id == num_layers - 1 and dino_head and \ ('sampling_offsets' in name or 'reference_points' in name): group_name = 'layer_%d_%s_0.1x' % (layer_id, group_name) elif ('sampling_offsets' in name or 'reference_points' in name) and 'backbone' in name: group_name = 'layer_%d_%s_offset_lr_scale' % (layer_id, group_name) else: group_name = 'layer_%d_%s' % (layer_id, group_name) if group_name not in parameter_groups: scale = layer_decay_rate ** (num_layers - layer_id - 1) if scale < 1 and backbone_small_lr == True: scale = scale * 0.1 if '0.1x' in group_name: scale = scale * 0.1 if 'offset_lr_scale' in group_name: scale = scale * offset_lr_scale parameter_groups[group_name] = { 'weight_decay': this_weight_decay, 'params': [], 'param_names': [], 'lr_scale': scale, 'group_name': group_name, 'lr': scale * self.base_lr, } parameter_groups[group_name]['params'].append(param) parameter_groups[group_name]['param_names'].append(name) rank, _ = get_dist_info() if rank == 0: to_display = {} for key in parameter_groups: to_display[key] = { 'param_names': parameter_groups[key]['param_names'], 'lr_scale': parameter_groups[key]['lr_scale'], 'lr': parameter_groups[key]['lr'], 'weight_decay': parameter_groups[key]['weight_decay'], } logger.info('Param groups = %s' % json.dumps(to_display, indent=2)) # state_dict = module.state_dict() # for group_name in parameter_groups: # group = parameter_groups[group_name] # for name in group["param_names"]: # group["params"].append(state_dict[name]) params.extend(parameter_groups.values())