# Copyright (c) OpenMMLab. All rights reserved. import functools import pickle import warnings from collections import OrderedDict import torch import torch.distributed as dist from mmcv.runner import OptimizerHook, get_dist_info from torch._utils import (_flatten_dense_tensors, _take_tensors, _unflatten_dense_tensors) def _allreduce_coalesced(tensors, world_size, bucket_size_mb=-1): if bucket_size_mb > 0: bucket_size_bytes = bucket_size_mb * 1024 * 1024 buckets = _take_tensors(tensors, bucket_size_bytes) else: buckets = OrderedDict() for tensor in tensors: tp = tensor.type() if tp not in buckets: buckets[tp] = [] buckets[tp].append(tensor) buckets = buckets.values() for bucket in buckets: flat_tensors = _flatten_dense_tensors(bucket) dist.all_reduce(flat_tensors) flat_tensors.div_(world_size) for tensor, synced in zip( bucket, _unflatten_dense_tensors(flat_tensors, bucket)): tensor.copy_(synced) def allreduce_grads(params, coalesce=True, bucket_size_mb=-1): """Allreduce gradients. Args: params (list[torch.Parameters]): List of parameters of a model coalesce (bool, optional): Whether allreduce parameters as a whole. Defaults to True. bucket_size_mb (int, optional): Size of bucket, the unit is MB. Defaults to -1. """ grads = [ param.grad.data for param in params if param.requires_grad and param.grad is not None ] world_size = dist.get_world_size() if coalesce: _allreduce_coalesced(grads, world_size, bucket_size_mb) else: for tensor in grads: dist.all_reduce(tensor.div_(world_size)) class DistOptimizerHook(OptimizerHook): """Deprecated optimizer hook for distributed training.""" def __init__(self, *args, **kwargs): warnings.warn('"DistOptimizerHook" is deprecated, please switch to' '"mmcv.runner.OptimizerHook".') super().__init__(*args, **kwargs) def reduce_mean(tensor): """"Obtain the mean of tensor on different GPUs.""" if not (dist.is_available() and dist.is_initialized()): return tensor tensor = tensor.clone() dist.all_reduce(tensor.div_(dist.get_world_size()), op=dist.ReduceOp.SUM) return tensor def obj2tensor(pyobj, device='cuda'): """Serialize picklable python object to tensor.""" storage = torch.ByteStorage.from_buffer(pickle.dumps(pyobj)) return torch.ByteTensor(storage).to(device=device) def tensor2obj(tensor): """Deserialize tensor to picklable python object.""" return pickle.loads(tensor.cpu().numpy().tobytes()) @functools.lru_cache() def _get_global_gloo_group(): """Return a process group based on gloo backend, containing all the ranks The result is cached.""" if dist.get_backend() == 'nccl': return dist.new_group(backend='gloo') else: return dist.group.WORLD def all_reduce_dict(py_dict, op='sum', group=None, to_float=True): """Apply all reduce function for python dict object. The code is modified from https://github.com/Megvii- BaseDetection/YOLOX/blob/main/yolox/utils/allreduce_norm.py. NOTE: make sure that py_dict in different ranks has the same keys and the values should be in the same shape. Args: py_dict (dict): Dict to be applied all reduce op. op (str): Operator, could be 'sum' or 'mean'. Default: 'sum' group (:obj:`torch.distributed.group`, optional): Distributed group, Default: None. to_float (bool): Whether to convert all values of dict to float. Default: True. Returns: OrderedDict: reduced python dict object. """ _, world_size = get_dist_info() if world_size == 1: return py_dict if group is None: # TODO: May try not to use gloo in the future group = _get_global_gloo_group() if dist.get_world_size(group) == 1: return py_dict # all reduce logic across different devices. py_key = list(py_dict.keys()) py_key_tensor = obj2tensor(py_key) dist.broadcast(py_key_tensor, src=0) py_key = tensor2obj(py_key_tensor) tensor_shapes = [py_dict[k].shape for k in py_key] tensor_numels = [py_dict[k].numel() for k in py_key] if to_float: flatten_tensor = torch.cat( [py_dict[k].flatten().float() for k in py_key]) else: flatten_tensor = torch.cat([py_dict[k].flatten() for k in py_key]) dist.all_reduce(flatten_tensor, op=dist.ReduceOp.SUM) if op == 'mean': flatten_tensor /= world_size split_tensors = [ x.reshape(shape) for x, shape in zip( torch.split(flatten_tensor, tensor_numels), tensor_shapes) ] return OrderedDict({k: v for k, v in zip(py_key, split_tensors)})