# Copyright (c) OpenMMLab. All rights reserved. import mmcv import numpy as np from mmseg.datasets.builder import PIPELINES @PIPELINES.register_module() class SETR_Resize(object): """Resize images & seg. This transform resizes the input image to some scale. If the input dict contains the key "scale", then the scale in the input dict is used, otherwise the specified scale in the init method is used. ``img_scale`` can either be a tuple (single-scale) or a list of tuple (multi-scale). There are 3 multiscale modes: - ``ratio_range is not None``: randomly sample a ratio from the ratio range and multiply it with the image scale. - ``ratio_range is None and multiscale_mode == "range"``: randomly sample a scale from the a range. - ``ratio_range is None and multiscale_mode == "value"``: randomly sample a scale from multiple scales. Args: img_scale (tuple or list[tuple]): Images scales for resizing. multiscale_mode (str): Either "range" or "value". ratio_range (tuple[float]): (min_ratio, max_ratio) keep_ratio (bool): Whether to keep the aspect ratio when resizing the image. """ def __init__(self, img_scale=None, multiscale_mode='range', ratio_range=None, keep_ratio=True, crop_size=None, setr_multi_scale=False): if img_scale is None: self.img_scale = None else: if isinstance(img_scale, list): self.img_scale = img_scale else: self.img_scale = [img_scale] # assert mmcv.is_list_of(self.img_scale, tuple) if ratio_range is not None: # mode 1: given a scale and a range of image ratio assert len(self.img_scale) == 1 else: # mode 2: given multiple scales or a range of scales assert multiscale_mode in ['value', 'range'] self.multiscale_mode = multiscale_mode self.ratio_range = ratio_range self.keep_ratio = keep_ratio self.crop_size = crop_size self.setr_multi_scale = setr_multi_scale @staticmethod def random_select(img_scales): """Randomly select an img_scale from given candidates. Args: img_scales (list[tuple]): Images scales for selection. Returns: (tuple, int): Returns a tuple ``(img_scale, scale_dix)``, where ``img_scale`` is the selected image scale and ``scale_idx`` is the selected index in the given candidates. """ assert mmcv.is_list_of(img_scales, tuple) scale_idx = np.random.randint(len(img_scales)) img_scale = img_scales[scale_idx] return img_scale, scale_idx @staticmethod def random_sample(img_scales): """Randomly sample an img_scale when ``multiscale_mode=='range'``. Args: img_scales (list[tuple]): Images scale range for sampling. There must be two tuples in img_scales, which specify the lower and uper bound of image scales. Returns: (tuple, None): Returns a tuple ``(img_scale, None)``, where ``img_scale`` is sampled scale and None is just a placeholder to be consistent with :func:`random_select`. """ assert mmcv.is_list_of(img_scales, tuple) and len(img_scales) == 2 img_scale_long = [max(s) for s in img_scales] img_scale_short = [min(s) for s in img_scales] long_edge = np.random.randint( min(img_scale_long), max(img_scale_long) + 1) short_edge = np.random.randint( min(img_scale_short), max(img_scale_short) + 1) img_scale = (long_edge, short_edge) return img_scale, None @staticmethod def random_sample_ratio(img_scale, ratio_range): """Randomly sample an img_scale when ``ratio_range`` is specified. A ratio will be randomly sampled from the range specified by ``ratio_range``. Then it would be multiplied with ``img_scale`` to generate sampled scale. Args: img_scale (tuple): Images scale base to multiply with ratio. ratio_range (tuple[float]): The minimum and maximum ratio to scale the ``img_scale``. Returns: (tuple, None): Returns a tuple ``(scale, None)``, where ``scale`` is sampled ratio multiplied with ``img_scale`` and None is just a placeholder to be consistent with :func:`random_select`. """ assert isinstance(img_scale, tuple) and len(img_scale) == 2 min_ratio, max_ratio = ratio_range assert min_ratio <= max_ratio ratio = np.random.random_sample() * (max_ratio - min_ratio) + min_ratio scale = int(img_scale[0] * ratio), int(img_scale[1] * ratio) return scale, None def _random_scale(self, results): """Randomly sample an img_scale according to ``ratio_range`` and ``multiscale_mode``. If ``ratio_range`` is specified, a ratio will be sampled and be multiplied with ``img_scale``. If multiple scales are specified by ``img_scale``, a scale will be sampled according to ``multiscale_mode``. Otherwise, single scale will be used. Args: results (dict): Result dict from :obj:`dataset`. Returns: dict: Two new keys 'scale` and 'scale_idx` are added into ``results``, which would be used by subsequent pipelines. """ if self.ratio_range is not None: scale, scale_idx = self.random_sample_ratio( self.img_scale[0], self.ratio_range) elif len(self.img_scale) == 1: scale, scale_idx = self.img_scale[0], 0 elif self.multiscale_mode == 'range': scale, scale_idx = self.random_sample(self.img_scale) elif self.multiscale_mode == 'value': scale, scale_idx = self.random_select(self.img_scale) else: raise NotImplementedError results['scale'] = scale results['scale_idx'] = scale_idx def _resize_img(self, results): """Resize images with ``results['scale']``.""" if self.keep_ratio: if self.setr_multi_scale: if min(results['scale']) < self.crop_size[0]: new_short = self.crop_size[0] else: new_short = min(results['scale']) h, w = results['img'].shape[:2] if h > w: new_h, new_w = new_short * h / w, new_short else: new_h, new_w = new_short, new_short * w / h results['scale'] = (new_h, new_w) img, scale_factor = mmcv.imrescale(results['img'], results['scale'], return_scale=True) # the w_scale and h_scale has minor difference # a real fix should be done in the mmcv.imrescale in the future new_h, new_w = img.shape[:2] h, w = results['img'].shape[:2] w_scale = new_w / w h_scale = new_h / h else: img, w_scale, h_scale = mmcv.imresize(results['img'], results['scale'], return_scale=True) scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], dtype=np.float32) results['img'] = img results['img_shape'] = img.shape results['pad_shape'] = img.shape # in case that there is no padding results['scale_factor'] = scale_factor results['keep_ratio'] = self.keep_ratio def _resize_seg(self, results): """Resize semantic segmentation map with ``results['scale']``.""" for key in results.get('seg_fields', []): if self.keep_ratio: gt_seg = mmcv.imrescale(results[key], results['scale'], interpolation='nearest') else: gt_seg = mmcv.imresize(results[key], results['scale'], interpolation='nearest') results['gt_semantic_seg'] = gt_seg def __call__(self, results): """Call function to resize images, bounding boxes, masks, semantic segmentation map. Args: results (dict): Result dict from loading pipeline. Returns: dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor', 'keep_ratio' keys are added into result dict. """ if 'scale' not in results: self._random_scale(results) self._resize_img(results) self._resize_seg(results) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += (f'(img_scale={self.img_scale}, ' f'multiscale_mode={self.multiscale_mode}, ' f'ratio_range={self.ratio_range}, ' f'keep_ratio={self.keep_ratio})') return repr_str @PIPELINES.register_module() class PadShortSide(object): """Pad the image & mask. Pad to the minimum size that is equal or larger than a number. Added keys are "pad_shape", "pad_fixed_size", Args: size (int, optional): Fixed padding size. pad_val (float, optional): Padding value. Default: 0. seg_pad_val (float, optional): Padding value of segmentation map. Default: 255. """ def __init__(self, size=None, pad_val=0, seg_pad_val=255): self.size = size self.pad_val = pad_val self.seg_pad_val = seg_pad_val # only one of size and size_divisor should be valid assert size is not None def _pad_img(self, results): """Pad images according to ``self.size``.""" h, w = results['img'].shape[:2] new_h = max(h, self.size) new_w = max(w, self.size) padded_img = mmcv.impad(results['img'], shape=(new_h, new_w), pad_val=self.pad_val) results['img'] = padded_img results['pad_shape'] = padded_img.shape # results['unpad_shape'] = (h, w) def _pad_seg(self, results): """Pad masks according to ``results['pad_shape']``.""" for key in results.get('seg_fields', []): results[key] = mmcv.impad(results[key], shape=results['pad_shape'][:2], pad_val=self.seg_pad_val) def __call__(self, results): """Call function to pad images, masks, semantic segmentation maps. Args: results (dict): Result dict from loading pipeline. Returns: dict: Updated result dict. """ h, w = results['img'].shape[:2] if h >= self.size and w >= self.size: # 短边比窗口大,跳过 pass else: self._pad_img(results) self._pad_seg(results) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(size={self.size}, pad_val={self.pad_val})' return repr_str @PIPELINES.register_module() class MapillaryHack(object): """map MV 65 class to 19 class like Cityscapes.""" def __init__(self): self.map = [[13, 24, 41], [2, 15], [17], [6], [3], [45, 47], [48], [50], [30], [29], [27], [19], [20, 21, 22], [55], [61], [54], [58], [57], [52]] self.others = [i for i in range(66)] for i in self.map: for j in i: if j in self.others: self.others.remove(j) def __call__(self, results): """Call function to process the image with gamma correction. Args: results (dict): Result dict from loading pipeline. Returns: dict: Processed results. """ gt_map = results['gt_semantic_seg'] # others -> 255 new_gt_map = np.zeros_like(gt_map) for value in self.others: new_gt_map[gt_map == value] = 255 for index, map in enumerate(self.map): for value in map: new_gt_map[gt_map == value] = index results['gt_semantic_seg'] = new_gt_map return results def __repr__(self): repr_str = self.__class__.__name__ return repr_str