--- base_model: unsloth/qwen2-7b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en datasets: - LogicNet-Subnet/Aristole --- # Overview This model is a fine-tuned version of **Qwen/Qwen2-7B-Instruct** on the **LogicNet-Subnet/Aristole** dataset. It achieves the following benchmarks on the evaluation set: - **Reliability**: 98.53% - **Correctness**: 0.9739 ### Key Details: - **Developed by**: LogicNet Team - **License**: Apache 2.0 - **Base Model**: [unsloth/qwen2-7b-instruct-bnb-4bit](https://huggingface.co/unsloth/qwen2-7b-instruct-bnb-4bit) This fine-tuned Qwen2 model was trained **2x faster** using [Unsloth](https://github.com/unslothai/unsloth) and Hugging Face's **TRL** library. --- ## Model and Training Hyperparameters ### Model Configuration: - **dtype**: `torch.bfloat16` - **load_in_4bit**: `True` ### Prompt Configuration: - **max_seq_length**: `2048` ### PEFT Model Parameters: - **r**: `16` - **lora_alpha**: `16` - **lora_dropout**: `0` - **bias**: `"none"` - **use_gradient_checkpointing**: `"unsloth"` - **random_state**: `3407` - **use_rslora**: `False` - **loftq_config**: `None` ### Training Arguments: - **per_device_train_batch_size**: `2` - **gradient_accumulation_steps**: `4` - **warmup_steps**: `5` - **max_steps**: `70` - **learning_rate**: `2e-4` - **fp16**: `not is_bfloat16_supported()` - **bf16**: `is_bfloat16_supported()` - **logging_steps**: `1` - **optim**: `"adamw_8bit"` - **weight_decay**: `0.01` - **lr_scheduler_type**: `"linear"` - **seed**: `3407` - **output_dir**: `"outputs"` --- ## Training Results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.4764 | 1.0 | 1150 | 1.1850 | | 1.3102 | 2.0 | 2050 | 1.1091 | | 1.1571 | 3.0 | 3100 | 1.0813 | | 1.0922 | 4.0 | 3970 | 0.9906 | | 0.9809 | 5.0 | 5010 | 0.9021 | ## How To Use You can easily use the model for inference as shown below: ```python from transformers import AutoTokenizer, AutoModelForCausalLM # Load the model tokenizer = AutoTokenizer.from_pretrained("LogicNet-Subnet/LogicNet-7B") model = AutoModelForCausalLM.from_pretrained("LogicNet-Subnet/LogicNet-7B") # Prepare the input inputs = tokenizer( [ "what is odd which is bigger than zero?" # Example prompt ], return_tensors="pt" ).to("cuda") # Generate an output outputs = model.generate(**inputs) # Decode and print the result print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```