|
import json |
|
import os |
|
from collections import defaultdict |
|
from typing import Any, Dict, Optional |
|
|
|
import gradio as gr |
|
from peft.utils import SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME |
|
|
|
from ..extras.constants import ( |
|
DATA_CONFIG, |
|
DEFAULT_MODULE, |
|
DEFAULT_TEMPLATE, |
|
PEFT_METHODS, |
|
SUPPORTED_MODELS, |
|
TRAINING_STAGES, |
|
DownloadSource, |
|
) |
|
from ..extras.misc import use_modelscope |
|
|
|
|
|
ADAPTER_NAMES = {WEIGHTS_NAME, SAFETENSORS_WEIGHTS_NAME} |
|
DEFAULT_CACHE_DIR = "cache" |
|
DEFAULT_DATA_DIR = "data" |
|
DEFAULT_SAVE_DIR = "saves" |
|
USER_CONFIG = "user.config" |
|
|
|
|
|
def get_save_dir(*args) -> os.PathLike: |
|
return os.path.join(DEFAULT_SAVE_DIR, *args) |
|
|
|
|
|
def get_config_path() -> os.PathLike: |
|
return os.path.join(DEFAULT_CACHE_DIR, USER_CONFIG) |
|
|
|
|
|
def load_config() -> Dict[str, Any]: |
|
try: |
|
with open(get_config_path(), "r", encoding="utf-8") as f: |
|
return json.load(f) |
|
except Exception: |
|
return {"lang": None, "last_model": None, "path_dict": {}, "cache_dir": None} |
|
|
|
|
|
def save_config(lang: str, model_name: Optional[str] = None, model_path: Optional[str] = None) -> None: |
|
os.makedirs(DEFAULT_CACHE_DIR, exist_ok=True) |
|
user_config = load_config() |
|
user_config["lang"] = lang or user_config["lang"] |
|
if model_name: |
|
user_config["last_model"] = model_name |
|
user_config["path_dict"][model_name] = model_path |
|
with open(get_config_path(), "w", encoding="utf-8") as f: |
|
json.dump(user_config, f, indent=2, ensure_ascii=False) |
|
|
|
|
|
def get_model_path(model_name: str) -> str: |
|
user_config = load_config() |
|
path_dict: Dict[DownloadSource, str] = SUPPORTED_MODELS.get(model_name, defaultdict(str)) |
|
model_path = user_config["path_dict"].get(model_name, None) or path_dict.get(DownloadSource.DEFAULT, None) |
|
if ( |
|
use_modelscope() |
|
and path_dict.get(DownloadSource.MODELSCOPE) |
|
and model_path == path_dict.get(DownloadSource.DEFAULT) |
|
): |
|
model_path = path_dict.get(DownloadSource.MODELSCOPE) |
|
return model_path |
|
|
|
|
|
def get_prefix(model_name: str) -> str: |
|
return model_name.split("-")[0] |
|
|
|
|
|
def get_module(model_name: str) -> str: |
|
return DEFAULT_MODULE.get(get_prefix(model_name), "q_proj,v_proj") |
|
|
|
|
|
def get_template(model_name: str) -> str: |
|
if model_name and model_name.endswith("Chat") and get_prefix(model_name) in DEFAULT_TEMPLATE: |
|
return DEFAULT_TEMPLATE[get_prefix(model_name)] |
|
return "default" |
|
|
|
|
|
def list_adapters(model_name: str, finetuning_type: str) -> Dict[str, Any]: |
|
if finetuning_type not in PEFT_METHODS: |
|
return gr.update(value=[], choices=[], interactive=False) |
|
|
|
adapters = [] |
|
if model_name and finetuning_type == "lora": |
|
save_dir = get_save_dir(model_name, finetuning_type) |
|
if save_dir and os.path.isdir(save_dir): |
|
for adapter in os.listdir(save_dir): |
|
if os.path.isdir(os.path.join(save_dir, adapter)) and any( |
|
os.path.isfile(os.path.join(save_dir, adapter, name)) for name in ADAPTER_NAMES |
|
): |
|
adapters.append(adapter) |
|
return gr.update(value=[], choices=adapters, interactive=True) |
|
|
|
|
|
def load_dataset_info(dataset_dir: str) -> Dict[str, Dict[str, Any]]: |
|
try: |
|
with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f: |
|
return json.load(f) |
|
except Exception as err: |
|
print("Cannot open {} due to {}.".format(os.path.join(dataset_dir, DATA_CONFIG), str(err))) |
|
return {} |
|
|
|
|
|
def list_dataset( |
|
dataset_dir: Optional[str] = None, training_stage: Optional[str] = list(TRAINING_STAGES.keys())[0] |
|
) -> Dict[str, Any]: |
|
dataset_info = load_dataset_info(dataset_dir if dataset_dir is not None else DEFAULT_DATA_DIR) |
|
ranking = TRAINING_STAGES[training_stage] in ["rm", "dpo"] |
|
datasets = [k for k, v in dataset_info.items() if v.get("ranking", False) == ranking] |
|
return gr.update(value=[], choices=datasets) |
|
|