File size: 7,692 Bytes
5d83b2e ec40c84 5d83b2e ec40c84 5d83b2e ec40c84 5d83b2e 1f26120 5d83b2e 1f26120 ec40c84 1f26120 ec40c84 784084a ec40c84 1f26120 ec40c84 1f26120 ec40c84 1f26120 5d83b2e 1f26120 5d83b2e ec40c84 1f26120 ec40c84 e288520 ec40c84 5d83b2e ec40c84 1f26120 5d83b2e 1f26120 5d83b2e 1f26120 ec40c84 1f26120 ec40c84 1f26120 ec40c84 1f26120 ec40c84 1f26120 ec40c84 1f26120 ec40c84 1f26120 ec40c84 1f26120 ec40c84 1f26120 ec40c84 1f26120 ec40c84 1f26120 5d83b2e 1f26120 5d83b2e 1f26120 ec40c84 5d83b2e 1f26120 ec40c84 5d83b2e 1f26120 5d83b2e 1f26120 5d83b2e 1f26120 5d83b2e 1f26120 5d83b2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
---
base_model: unsloth/qwen2.5-0.5b-instruct-unsloth-bnb-4bit
library_name: transformers
model_name: QuadConnect2.5-0.5B-v0.0.9b
pipeline_tag: text-generation
tags:
- unsloth
- trl
- grpo
- connect4
- qwen
- RL
licence: license
datasets:
- Lyte/ConnectFour-T10
language:
- en
---
# QuadConnect2.5-0.5B-v0.0.9b - A Strategic Connect Four AI

## 🎮 Overview
QuadConnect2.5-0.5B is a specialized language model trained to master the game of Connect Four. Built on Qwen 2.5 (0.5B parameter base), this model uses GRPO (Group Relative Policy Optimization) to learn the strategic intricacies of Connect Four gameplay.
**Status**: Early training experiments (v0.0.9b) - Reward functions still evolving
## 🔍 Model Details
- **Developed by:** [Lyte](https://hf.co/Lyte)
- **Model type:** Small Language Model (SLM)
- **Language:** English
- **Base model:** [unsloth/qwen2.5-0.5b-instruct-unsloth-bnb-4bit](https://huggingface.co/unsloth/qwen2.5-0.5b-instruct-unsloth-bnb-4bit)
- **Training method:** [TRL](https://github.com/huggingface/trl)'s GRPO
- **Training data:** [Lyte/ConnectFour-T10](https://huggingface.co/datasets/Lyte/ConnectFour-T10)
## 🚀 Quick Start
### Option 1: Using Transformers
```python
from transformers import pipeline
SYSTEM_PROMPT = """You are a master Connect Four strategist whose goal is to win while preventing your opponent from winning. The game is played on a 6x7 grid (columns a–g, rows 1–6 with 1 at the bottom) where pieces drop to the lowest available spot.
Board:
- Represented as a list of occupied cells in the format: <column><row>(<piece>), e.g., 'a1(O)'.
- For example: 'a1(O), a2(X), b1(O)' indicates that cell a1 has an O, a2 has an X, and b1 has an O.
- An empty board is shown as 'Empty Board'.
- Win by connecting 4 pieces in any direction (horizontal, vertical, or diagonal).
Strategy:
1. Identify taken positions, and empty positions.
2. Find and execute winning moves.
3. If There isn't a winning move, then block your opponent's potential wins.
4. Control the center and set up future moves.
Respond in XML:
<reasoning>
Explain your thought process, focusing on your winning move, how you block your opponent, and your strategic plans.
</reasoning>
<move>
Specify the column letter (a–g) for your next move.
</move>
"""
board = {
"empty": "Game State:\n- You are playing as: X\n- Your previous moves: \n- Opponent's moves: \n- Current board state: Empty Board\n- Next available position per column: \nColumn a: a1, a2, a3, a4, a5, a6 \nColumn b: b1, b2, b3, b4, b5, b6 \nColumn c: c1, c2, c3, c4, c5, c6 \nColumn d: d1, d2, d3, d4, d5, d6 \nColumn e: e1, e2, e3, e4, e5, e6 \nColumn f: f1, f2, f3, f4, f5, f6 \nColumn g: g1, g2, g3, g4, g5, g6\n\nMake your move.",
"one_move": "Game State:\n- You are playing as: X\n- Your previous moves: \n- Opponent's moves: b1\n- Current board state: b1(O)\n- Next available position per column: \nColumn a: a1, a2, a3, a4, a5, a6 \nColumn b: b2, b3, b4, b5, b6 \nColumn c: c1, c2, c3, c4, c5, c6 \nColumn d: d1, d2, d3, d4, d5, d6 \nColumn e: e1, e2, e3, e4, e5, e6 \nColumn f: f1, f2, f3, f4, f5, f6 \nColumn g: g1, g2, g3, g4, g5, g6\n\nMake your move.",
"four_moves": "Game State:\n- You are playing as: X\n- Your previous moves: a1, a2\n- Opponent's moves: d1, a3\n- Current board state: a1(X), d1(O), a2(X), a3(O)\n- Next available position per column: \nColumn a: a4, a5, a6 \nColumn b: b1, b2, b3, b4, b5, b6 \nColumn c: c1, c2, c3, c4, c5, c6 \nColumn d: d2, d3, d4, d5, d6 \nColumn e: e1, e2, e3, e4, e5, e6 \nColumn f: f1, f2, f3, f4, f5, f6 \nColumn g: g1, g2, g3, g4, g5, g6\n\nMake your move.",
}
generator = pipeline("text-generation", model="Lyte/QuadConnect2.5-0.5B-v0.0.9b", device="cuda")
# use 'empty', 'one_move' or 'four_moves' in board['']
output = generator([
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": board['empty']}
], max_new_tokens=10245, return_full_text=False)[0]
print(output["generated_text"])
```
### Option 2: Using GGUF
Download the [Quantized GGUF (Q8_0)](https://huggingface.co/Lyte/QuadConnect2.5-0.5B-v0.0.9b/blob/main/unsloth.Q8_0.gguf) and use it in your favorite GGUF inference engine (e.g., LMStudio).
### Option 3: Using Hugging Face Space
Visit the [QuadConnect Space](https://huggingface.co/spaces/Lyte/QuadConnect) to interact with the model directly. You can also duplicate the space or download its code for local use.
## 📊 Evaluation Results
Model performance was evaluated on the [Lyte/ConnectFour-T10](https://huggingface.co/datasets/Lyte/ConnectFour-T10) validation split with various temperature settings.
### Summary Metrics Comparison
| Metric | v0.0.6b (Temp 0.6) | v0.0.8b (Temp 0.6) | v0.0.9b (Temp 0.6) | v0.0.9b (Temp 0.8) | v0.0.9b (Temp 1.0) |
|--------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Total games evaluated | 5082 | 5082 | 5082 | 5082 | 5082 |
| Correct predictions | 518 | 394 | 516 | **713** | 677 |
| Accuracy | 10.19% | 7.75% | 10.15% | **14.03%** | 13.32% |
| Most common move | d (41.14%) | d (67.61%) | a (38.72%) | a (31.01%) | a (26.99%) |
| Middle column usage | 75.05% | 99.53% | 29.08% | 35.43% | 39.49% |
### Move Distribution by Column
| Column | v0.0.6b (Temp 0.6) | v0.0.8b (Temp 0.6) | v0.0.9b (Temp 0.6) | v0.0.9b (Temp 0.8) | v0.0.9b (Temp 1.0) |
|--------|-------------------|-------------------|-------------------|-------------------|-------------------|
| a | 603 (19.02%) | 3 (0.12%) | 1447 (38.72%) | 1547 (31.01%) | 1351 (26.99%) |
| b | 111 (3.50%) | 4 (0.16%) | 644 (17.23%) | 924 (18.52%) | 997 (19.92%) |
| c | 785 (24.76%) | 463 (17.96%) | 648 (17.34%) | 1003 (20.11%) | 985 (19.68%) |
| d | 1304 (41.14%) | 1743 (67.61%) | 101 (2.70%) | 202 (4.05%) | 306 (6.11%) |
| e | 290 (9.15%) | 360 (13.96%) | 338 (9.04%) | 562 (11.27%) | 686 (13.70%) |
| f | 50 (1.58%) | 3 (0.12%) | 310 (8.30%) | 408 (8.18%) | 354 (7.07%) |
| g | 27 (0.85%) | 2 (0.08%) | 249 (6.66%) | 342 (6.86%) | 327 (6.53%) |
## 🔧 Training Details
### Data Preparation
1. Started with [Leon-LLM/Connect-Four-Datasets-Collection](https://huggingface.co/datasets/Leon-LLM/Connect-Four-Datasets-Collection)
2. Filtered for clean, complete entries
3. Further filtered to include only games with 10 or fewer turns
4. Split into train and validation sets
5. Final dataset: [Lyte/ConnectFour-T10](https://huggingface.co/datasets/Lyte/ConnectFour-T10)
### Evaluation Parameters
- Temperature: 0.6, 0.8, 1.0 (compared)
- Top-p: 0.95
- Max tokens: 1024
### Framework Versions
- TRL: 0.15.1
- Transformers: 4.49.0
- PyTorch: 2.5.1+cu121
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## 📚 Citations
For GRPO:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
For TRL:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
``` |