File size: 7,692 Bytes
5d83b2e
 
 
 
ec40c84
5d83b2e
 
 
 
ec40c84
 
 
5d83b2e
ec40c84
 
 
 
5d83b2e
 
1f26120
5d83b2e
1f26120
ec40c84
1f26120
ec40c84
784084a
ec40c84
1f26120
 
 
ec40c84
1f26120
 
 
 
 
 
ec40c84
1f26120
5d83b2e
1f26120
5d83b2e
 
 
 
ec40c84
 
 
 
 
 
 
 
 
 
 
1f26120
ec40c84
 
 
 
 
 
 
 
 
 
 
 
e288520
ec40c84
 
 
 
5d83b2e
ec40c84
 
1f26120
 
 
 
 
5d83b2e
 
 
1f26120
5d83b2e
1f26120
ec40c84
1f26120
ec40c84
1f26120
ec40c84
1f26120
ec40c84
1f26120
ec40c84
1f26120
ec40c84
1f26120
 
 
 
 
 
 
ec40c84
1f26120
ec40c84
1f26120
 
 
 
 
 
 
 
 
ec40c84
1f26120
ec40c84
1f26120
 
 
 
 
 
5d83b2e
1f26120
 
 
 
5d83b2e
1f26120
ec40c84
5d83b2e
1f26120
ec40c84
5d83b2e
 
1f26120
5d83b2e
1f26120
5d83b2e
 
 
 
 
 
 
 
 
1f26120
5d83b2e
 
1f26120
 
 
 
 
 
5d83b2e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
---
base_model: unsloth/qwen2.5-0.5b-instruct-unsloth-bnb-4bit
library_name: transformers
model_name: QuadConnect2.5-0.5B-v0.0.9b
pipeline_tag: text-generation
tags:
- unsloth
- trl
- grpo
- connect4
- qwen
- RL
licence: license
datasets:
- Lyte/ConnectFour-T10
language:
- en
---

# QuadConnect2.5-0.5B-v0.0.9b - A Strategic Connect Four AI

![Connect Four Demo](https://cdn-uploads.huggingface.co/production/uploads/62f847d692950415b63c6011/QiDstnBXlVVz6dGrx3uus.png)

## 🎮 Overview

QuadConnect2.5-0.5B is a specialized language model trained to master the game of Connect Four. Built on Qwen 2.5 (0.5B parameter base), this model uses GRPO (Group Relative Policy Optimization) to learn the strategic intricacies of Connect Four gameplay.

**Status**: Early training experiments (v0.0.9b) - Reward functions still evolving

## 🔍 Model Details

- **Developed by:** [Lyte](https://hf.co/Lyte)
- **Model type:** Small Language Model (SLM)
- **Language:** English
- **Base model:** [unsloth/qwen2.5-0.5b-instruct-unsloth-bnb-4bit](https://huggingface.co/unsloth/qwen2.5-0.5b-instruct-unsloth-bnb-4bit)
- **Training method:** [TRL](https://github.com/huggingface/trl)'s GRPO
- **Training data:** [Lyte/ConnectFour-T10](https://huggingface.co/datasets/Lyte/ConnectFour-T10)

## 🚀 Quick Start

### Option 1: Using Transformers

```python
from transformers import pipeline

SYSTEM_PROMPT = """You are a master Connect Four strategist whose goal is to win while preventing your opponent from winning. The game is played on a 6x7 grid (columns a–g, rows 1–6 with 1 at the bottom) where pieces drop to the lowest available spot.

Board:
- Represented as a list of occupied cells in the format: <column><row>(<piece>), e.g., 'a1(O)'.
- For example: 'a1(O), a2(X), b1(O)' indicates that cell a1 has an O, a2 has an X, and b1 has an O.
- An empty board is shown as 'Empty Board'.
- Win by connecting 4 pieces in any direction (horizontal, vertical, or diagonal).

Strategy:
1. Identify taken positions, and empty positions.
2. Find and execute winning moves.
3. If There isn't a winning move, then block your opponent's potential wins.
4. Control the center and set up future moves.

Respond in XML:
<reasoning>
Explain your thought process, focusing on your winning move, how you block your opponent, and your strategic plans.
</reasoning>
<move>
Specify the column letter (a–g) for your next move.
</move>
"""

board = {
    "empty": "Game State:\n- You are playing as: X\n- Your previous moves: \n- Opponent's moves: \n- Current board state: Empty Board\n- Next available position per column:  \nColumn a: a1, a2, a3, a4, a5, a6  \nColumn b: b1, b2, b3, b4, b5, b6  \nColumn c: c1, c2, c3, c4, c5, c6  \nColumn d: d1, d2, d3, d4, d5, d6  \nColumn e: e1, e2, e3, e4, e5, e6  \nColumn f: f1, f2, f3, f4, f5, f6  \nColumn g: g1, g2, g3, g4, g5, g6\n\nMake your move.",
    "one_move": "Game State:\n- You are playing as: X\n- Your previous moves: \n- Opponent's moves: b1\n- Current board state: b1(O)\n- Next available position per column:  \nColumn a: a1, a2, a3, a4, a5, a6  \nColumn b: b2, b3, b4, b5, b6  \nColumn c: c1, c2, c3, c4, c5, c6  \nColumn d: d1, d2, d3, d4, d5, d6  \nColumn e: e1, e2, e3, e4, e5, e6  \nColumn f: f1, f2, f3, f4, f5, f6  \nColumn g: g1, g2, g3, g4, g5, g6\n\nMake your move.",
    "four_moves": "Game State:\n- You are playing as: X\n- Your previous moves: a1, a2\n- Opponent's moves: d1, a3\n- Current board state: a1(X), d1(O), a2(X), a3(O)\n- Next available position per column:  \nColumn a: a4, a5, a6  \nColumn b: b1, b2, b3, b4, b5, b6  \nColumn c: c1, c2, c3, c4, c5, c6  \nColumn d: d2, d3, d4, d5, d6  \nColumn e: e1, e2, e3, e4, e5, e6  \nColumn f: f1, f2, f3, f4, f5, f6  \nColumn g: g1, g2, g3, g4, g5, g6\n\nMake your move.",
}

generator = pipeline("text-generation", model="Lyte/QuadConnect2.5-0.5B-v0.0.9b", device="cuda")

# use 'empty', 'one_move' or 'four_moves' in board['']
output = generator([
    {"role": "system", "content": SYSTEM_PROMPT}, 
    {"role": "user", "content": board['empty']}
], max_new_tokens=10245, return_full_text=False)[0]

print(output["generated_text"])
```

### Option 2: Using GGUF

Download the [Quantized GGUF (Q8_0)](https://huggingface.co/Lyte/QuadConnect2.5-0.5B-v0.0.9b/blob/main/unsloth.Q8_0.gguf) and use it in your favorite GGUF inference engine (e.g., LMStudio).

### Option 3: Using Hugging Face Space

Visit the [QuadConnect Space](https://huggingface.co/spaces/Lyte/QuadConnect) to interact with the model directly. You can also duplicate the space or download its code for local use.

## 📊 Evaluation Results

Model performance was evaluated on the [Lyte/ConnectFour-T10](https://huggingface.co/datasets/Lyte/ConnectFour-T10) validation split with various temperature settings.

### Summary Metrics Comparison

| Metric | v0.0.6b (Temp 0.6) | v0.0.8b (Temp 0.6) | v0.0.9b (Temp 0.6) | v0.0.9b (Temp 0.8) | v0.0.9b (Temp 1.0) |
|--------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Total games evaluated | 5082 | 5082 | 5082 | 5082 | 5082 |
| Correct predictions | 518 | 394 | 516 | **713** | 677 |
| Accuracy | 10.19% | 7.75% | 10.15% | **14.03%** | 13.32% |
| Most common move | d (41.14%) | d (67.61%) | a (38.72%) | a (31.01%) | a (26.99%) |
| Middle column usage | 75.05% | 99.53% | 29.08% | 35.43% | 39.49% |

### Move Distribution by Column

| Column | v0.0.6b (Temp 0.6) | v0.0.8b (Temp 0.6) | v0.0.9b (Temp 0.6) | v0.0.9b (Temp 0.8) | v0.0.9b (Temp 1.0) |
|--------|-------------------|-------------------|-------------------|-------------------|-------------------|
| a | 603 (19.02%) | 3 (0.12%) | 1447 (38.72%) | 1547 (31.01%) | 1351 (26.99%) |
| b | 111 (3.50%) | 4 (0.16%) | 644 (17.23%) | 924 (18.52%) | 997 (19.92%) |
| c | 785 (24.76%) | 463 (17.96%) | 648 (17.34%) | 1003 (20.11%) | 985 (19.68%) |
| d | 1304 (41.14%) | 1743 (67.61%) | 101 (2.70%) | 202 (4.05%) | 306 (6.11%) |
| e | 290 (9.15%) | 360 (13.96%) | 338 (9.04%) | 562 (11.27%) | 686 (13.70%) |
| f | 50 (1.58%) | 3 (0.12%) | 310 (8.30%) | 408 (8.18%) | 354 (7.07%) |
| g | 27 (0.85%) | 2 (0.08%) | 249 (6.66%) | 342 (6.86%) | 327 (6.53%) |

## 🔧 Training Details

### Data Preparation
1. Started with [Leon-LLM/Connect-Four-Datasets-Collection](https://huggingface.co/datasets/Leon-LLM/Connect-Four-Datasets-Collection)
2. Filtered for clean, complete entries
3. Further filtered to include only games with 10 or fewer turns
4. Split into train and validation sets
5. Final dataset: [Lyte/ConnectFour-T10](https://huggingface.co/datasets/Lyte/ConnectFour-T10)

### Evaluation Parameters
- Temperature: 0.6, 0.8, 1.0 (compared)
- Top-p: 0.95
- Max tokens: 1024

### Framework Versions
- TRL: 0.15.1
- Transformers: 4.49.0
- PyTorch: 2.5.1+cu121
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## 📚 Citations

For GRPO:
```bibtex
@article{zhihong2024deepseekmath,
    title        = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
    author       = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
    year         = 2024,
    eprint       = {arXiv:2402.03300},
}
```

For TRL:
```bibtex
@misc{vonwerra2022trl,
    title        = {{TRL: Transformer Reinforcement Learning}},
    author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
    year         = 2020,
    journal      = {GitHub repository},
    publisher    = {GitHub},
    howpublished = {\url{https://github.com/huggingface/trl}}
}
```