Upload folder using huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,3 +1,108 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: cc-by-sa-4.0
|
| 3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-sa-4.0
|
| 3 |
+
---
|
| 4 |
+
|
| 5 |
+
# Model Card: VIMUL
|
| 6 |
+
|
| 7 |
+
## Requires
|
| 8 |
+
|
| 9 |
+
```bash
|
| 10 |
+
git clone https://github.com/LLaVA-VL/LLaVA-NeXT.git
|
| 11 |
+
pip install LLaVA-NeXT
|
| 12 |
+
```
|
| 13 |
+
|
| 14 |
+
## Inference
|
| 15 |
+
|
| 16 |
+
Example video inference:
|
| 17 |
+
|
| 18 |
+
```python
|
| 19 |
+
import torch
|
| 20 |
+
import numpy as np
|
| 21 |
+
from llava.model.builder import load_pretrained_model
|
| 22 |
+
from llava.mm_utils import process_anyres_image, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
|
| 23 |
+
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
| 24 |
+
from llava.conversation import conv_templates, SeparatorStyle
|
| 25 |
+
from transformers import AutoConfig
|
| 26 |
+
from decord import VideoReader, cpu
|
| 27 |
+
|
| 28 |
+
def load_video(video_path, num_frames=32, force_sample=False):
|
| 29 |
+
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
|
| 30 |
+
total_frame_num = len(vr)
|
| 31 |
+
fps = round(vr.get_avg_fps())
|
| 32 |
+
frame_idx = [i for i in range(0, len(vr), fps)]
|
| 33 |
+
if len(frame_idx) > num_frames or force_sample:
|
| 34 |
+
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, num_frames, dtype=int)
|
| 35 |
+
frame_idx = uniform_sampled_frames.tolist()
|
| 36 |
+
frames = vr.get_batch(frame_idx).asnumpy()
|
| 37 |
+
return frames
|
| 38 |
+
|
| 39 |
+
def infer(
|
| 40 |
+
model_path,
|
| 41 |
+
video_path,
|
| 42 |
+
prompt,
|
| 43 |
+
model_base=None,
|
| 44 |
+
conv_mode=None,
|
| 45 |
+
num_frames=32,
|
| 46 |
+
force_sample=False,
|
| 47 |
+
load_8bit=False,
|
| 48 |
+
device="cuda"
|
| 49 |
+
):
|
| 50 |
+
model_name = get_model_name_from_path(model_path)+"llava_qwen"
|
| 51 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(
|
| 52 |
+
model_path, model_base, model_name, load_8bit=load_8bit
|
| 53 |
+
)
|
| 54 |
+
frames = load_video(video_path, num_frames=num_frames, force_sample=force_sample)
|
| 55 |
+
video = image_processor.preprocess(frames, return_tensors="pt")["pixel_values"].half().to(device)
|
| 56 |
+
video = [video]
|
| 57 |
+
|
| 58 |
+
qs = DEFAULT_IMAGE_TOKEN + "\n" + prompt
|
| 59 |
+
conv = conv_templates[conv_mode].copy() if conv_mode else conv_templates["default"].copy()
|
| 60 |
+
conv.append_message(conv.roles[0], qs)
|
| 61 |
+
conv.append_message(conv.roles[1], None)
|
| 62 |
+
prompt_str = conv.get_prompt()
|
| 63 |
+
|
| 64 |
+
input_ids = tokenizer_image_token(prompt_str, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
|
| 65 |
+
if tokenizer.pad_token_id is None:
|
| 66 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 67 |
+
|
| 68 |
+
attention_masks = input_ids.ne(tokenizer.pad_token_id).long().to(device)
|
| 69 |
+
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
| 70 |
+
keywords = [stop_str]
|
| 71 |
+
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
| 72 |
+
|
| 73 |
+
with torch.inference_mode():
|
| 74 |
+
output_ids = model.generate(
|
| 75 |
+
inputs=input_ids,
|
| 76 |
+
images=video,
|
| 77 |
+
attention_mask=attention_masks,
|
| 78 |
+
modalities="video",
|
| 79 |
+
do_sample=False,
|
| 80 |
+
temperature=0.0,
|
| 81 |
+
max_new_tokens=1024,
|
| 82 |
+
top_p=0.1,
|
| 83 |
+
num_beams=1,
|
| 84 |
+
use_cache=True,
|
| 85 |
+
stopping_criteria=[stopping_criteria]
|
| 86 |
+
)
|
| 87 |
+
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
| 88 |
+
if outputs.endswith(stop_str):
|
| 89 |
+
outputs = outputs[:-len(stop_str)]
|
| 90 |
+
return outputs.strip()
|
| 91 |
+
|
| 92 |
+
if __name__ == "__main__":
|
| 93 |
+
model_path = "MBZUAI/ViMUL"
|
| 94 |
+
video_path = "LLaVA-NeXT/playground/demo/xU25MMA2N4aVtYay.mp4"
|
| 95 |
+
prompt = "Describe what happens in the video."
|
| 96 |
+
conv_mode = "qwen_1_5"
|
| 97 |
+
output = infer(model_path, video_path, prompt, conv_mode=conv_mode)
|
| 98 |
+
print("\n")
|
| 99 |
+
print("="*40)
|
| 100 |
+
print("Output:", output)
|
| 101 |
+
print("="*40)
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
## Citation
|
| 105 |
+
|
| 106 |
+
```
|
| 107 |
+
|
| 108 |
+
```
|