project-monai commited on
Commit
f0416a2
·
verified ·
1 Parent(s): f5e7f43

Upload endoscopic_tool_segmentation version 0.6.2

Browse files
Files changed (1) hide show
  1. configs/metadata.json +7 -6
configs/metadata.json CHANGED
@@ -1,7 +1,8 @@
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20240725.json",
3
- "version": "0.6.1",
4
  "changelog": {
 
5
  "0.6.1": "update to huggingface hosting and fix missing dependencies",
6
  "0.6.0": "use monai 1.4 and update large files",
7
  "0.5.9": "update to use monai 1.3.1",
@@ -42,11 +43,11 @@
42
  "tensorboard": "2.17.0"
43
  },
44
  "supported_apps": {},
45
- "name": "Endoscopic tool segmentation",
46
- "task": "Endoscopic tool segmentation",
47
- "description": "A pre-trained binary segmentation model for endoscopic tool segmentation",
48
- "authors": "NVIDIA DLMED team",
49
- "copyright": "Copyright (c) 2021-2022, NVIDIA CORPORATION",
50
  "data_source": "private dataset",
51
  "data_type": "RGB",
52
  "image_classes": "three channel data, intensity [0-255]",
 
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20240725.json",
3
+ "version": "0.6.2",
4
  "changelog": {
5
+ "0.6.2": "enhance metadata with improved descriptions and task specification",
6
  "0.6.1": "update to huggingface hosting and fix missing dependencies",
7
  "0.6.0": "use monai 1.4 and update large files",
8
  "0.5.9": "update to use monai 1.3.1",
 
43
  "tensorboard": "2.17.0"
44
  },
45
  "supported_apps": {},
46
+ "name": "Endoscopic Tool Segmentation",
47
+ "task": "Binary Segmentation of Surgical Tools in Endoscopic Images",
48
+ "description": "A 2D segmentation model that identifies and delineates surgical instruments in endoscopic video frames. The model processes 736x480 pixel RGB images and provides binary segmentation masks. Based on an EfficientNet-UNet architecture, the model supports real-time analysis of surgical procedures.",
49
+ "authors": "MONAI team",
50
+ "copyright": "Copyright (c) MONAI Consortium",
51
  "data_source": "private dataset",
52
  "data_type": "RGB",
53
  "image_classes": "three channel data, intensity [0-255]",