File size: 5,688 Bytes
02aa18d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import json
import os
from typing import Sequence

from monai.apps.utils import extractall
from monai.utils import ensure_tuple_rep


def convert_body_region(body_region: str | Sequence[str]) -> Sequence[int]:
    """
    Convert body region string to body region index.
    Args:
        body_region: list of input body region string. If single str, will be converted to list of str.
    Return:
        body_region_indices, list of input body region index.
    """
    if type(body_region) is str:
        body_region = [body_region]

    # body region mapping for maisi
    region_mapping_maisi = {
        "head": 0,
        "chest": 1,
        "thorax": 1,
        "chest/thorax": 1,
        "abdomen": 2,
        "pelvis": 3,
        "lower": 3,
        "pelvis/lower": 3,
    }

    # perform mapping
    body_region_indices = []
    for region in body_region:
        normalized_region = region.lower()  # norm str to lower case
        if normalized_region not in region_mapping_maisi:
            raise ValueError(f"Invalid region: {normalized_region}")
        body_region_indices.append(region_mapping_maisi[normalized_region])

    return body_region_indices


def find_masks(
    anatomy_list: int | Sequence[int],
    spacing: Sequence[float] | float = 1.0,
    output_size: Sequence[int] = (512, 512, 512),
    check_spacing_and_output_size: bool = False,
    database_filepath: str = "./configs/database.json",
    mask_foldername: str = "./datasets/masks/",
):
    """
    Find candidate masks that fullfills all the requirements.
    They shoud contain all the anatomies in `anatomy_list`.
    If there is no tumor specified in `anatomy_list`, we also expect the candidate masks to be tumor free.
    If check_spacing_and_output_size is True, the candidate masks need to have the expected `spacing` and `output_size`.
    Args:
        anatomy_list: list of input anatomy. The found candidate mask will include these anatomies.
        spacing: list of three floats, voxel spacing. If providing a single number, will use it for all the three dimensions.
        output_size: list of three int, expected candidate mask spatial size.
        check_spacing_and_output_size: whether we expect candidate mask to have spatial size of `output_size`
            and voxel size of `spacing`.
        database_filepath: path for the json file that stores the information of all the candidate masks.
        mask_foldername: directory that saves all the candidate masks.
    Return:
        candidate_masks, list of dict, each dict contains information of one candidate mask that fullfills all the requirements.
    """
    # check and preprocess input
    if isinstance(anatomy_list, int):
        anatomy_list = [anatomy_list]

    spacing = ensure_tuple_rep(spacing, 3)

    if not os.path.exists(mask_foldername):
        zip_file_path = mask_foldername + ".zip"

        if not os.path.isfile(zip_file_path):
            raise ValueError(f"Please download {zip_file_path} following the instruction in ./datasets/README.md.")

        print(f"Extracting {zip_file_path} to {os.path.dirname(zip_file_path)}")
        extractall(filepath=zip_file_path, output_dir=os.path.dirname(zip_file_path), file_type="zip")
        print(f"Unzipped {zip_file_path} to {mask_foldername}.")

    if not os.path.isfile(database_filepath):
        raise ValueError(f"Please download {database_filepath} following the instruction in ./datasets/README.md.")
    with open(database_filepath, "r") as f:
        db = json.load(f)

    # select candidate_masks
    candidate_masks = []
    for _item in db:
        if not set(anatomy_list).issubset(_item["label_list"]):
            continue

        # whether to keep this mask, default to be True.
        keep_mask = True

        for tumor_label in [23, 24, 26, 27, 128]:
            # we skip those mask with tumors if users do not provide tumor label in anatomy_list
            if tumor_label not in anatomy_list and tumor_label in _item["label_list"]:
                keep_mask = False

        if check_spacing_and_output_size:
            # if the output_size and spacing are different with user's input, skip it
            for axis in range(3):
                if _item["dim"][axis] != output_size[axis] or _item["spacing"][axis] != spacing[axis]:
                    keep_mask = False

        if keep_mask:
            # if decide to keep this mask, we pack the information of this mask and add to final output.
            candidate = {
                "pseudo_label": os.path.join(mask_foldername, _item["pseudo_label_filename"]),
                "spacing": _item["spacing"],
                "dim": _item["dim"],
            }

            # Conditionally add the label to the candidate dictionary
            if "label_filename" in _item:
                candidate["label"] = os.path.join(mask_foldername, _item["label_filename"])

            candidate_masks.append(candidate)

    if len(candidate_masks) == 0 and not check_spacing_and_output_size:
        raise ValueError("Cannot find body region with given anatomy list.")

    return candidate_masks