File size: 5,688 Bytes
02aa18d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from typing import Sequence
from monai.apps.utils import extractall
from monai.utils import ensure_tuple_rep
def convert_body_region(body_region: str | Sequence[str]) -> Sequence[int]:
"""
Convert body region string to body region index.
Args:
body_region: list of input body region string. If single str, will be converted to list of str.
Return:
body_region_indices, list of input body region index.
"""
if type(body_region) is str:
body_region = [body_region]
# body region mapping for maisi
region_mapping_maisi = {
"head": 0,
"chest": 1,
"thorax": 1,
"chest/thorax": 1,
"abdomen": 2,
"pelvis": 3,
"lower": 3,
"pelvis/lower": 3,
}
# perform mapping
body_region_indices = []
for region in body_region:
normalized_region = region.lower() # norm str to lower case
if normalized_region not in region_mapping_maisi:
raise ValueError(f"Invalid region: {normalized_region}")
body_region_indices.append(region_mapping_maisi[normalized_region])
return body_region_indices
def find_masks(
anatomy_list: int | Sequence[int],
spacing: Sequence[float] | float = 1.0,
output_size: Sequence[int] = (512, 512, 512),
check_spacing_and_output_size: bool = False,
database_filepath: str = "./configs/database.json",
mask_foldername: str = "./datasets/masks/",
):
"""
Find candidate masks that fullfills all the requirements.
They shoud contain all the anatomies in `anatomy_list`.
If there is no tumor specified in `anatomy_list`, we also expect the candidate masks to be tumor free.
If check_spacing_and_output_size is True, the candidate masks need to have the expected `spacing` and `output_size`.
Args:
anatomy_list: list of input anatomy. The found candidate mask will include these anatomies.
spacing: list of three floats, voxel spacing. If providing a single number, will use it for all the three dimensions.
output_size: list of three int, expected candidate mask spatial size.
check_spacing_and_output_size: whether we expect candidate mask to have spatial size of `output_size`
and voxel size of `spacing`.
database_filepath: path for the json file that stores the information of all the candidate masks.
mask_foldername: directory that saves all the candidate masks.
Return:
candidate_masks, list of dict, each dict contains information of one candidate mask that fullfills all the requirements.
"""
# check and preprocess input
if isinstance(anatomy_list, int):
anatomy_list = [anatomy_list]
spacing = ensure_tuple_rep(spacing, 3)
if not os.path.exists(mask_foldername):
zip_file_path = mask_foldername + ".zip"
if not os.path.isfile(zip_file_path):
raise ValueError(f"Please download {zip_file_path} following the instruction in ./datasets/README.md.")
print(f"Extracting {zip_file_path} to {os.path.dirname(zip_file_path)}")
extractall(filepath=zip_file_path, output_dir=os.path.dirname(zip_file_path), file_type="zip")
print(f"Unzipped {zip_file_path} to {mask_foldername}.")
if not os.path.isfile(database_filepath):
raise ValueError(f"Please download {database_filepath} following the instruction in ./datasets/README.md.")
with open(database_filepath, "r") as f:
db = json.load(f)
# select candidate_masks
candidate_masks = []
for _item in db:
if not set(anatomy_list).issubset(_item["label_list"]):
continue
# whether to keep this mask, default to be True.
keep_mask = True
for tumor_label in [23, 24, 26, 27, 128]:
# we skip those mask with tumors if users do not provide tumor label in anatomy_list
if tumor_label not in anatomy_list and tumor_label in _item["label_list"]:
keep_mask = False
if check_spacing_and_output_size:
# if the output_size and spacing are different with user's input, skip it
for axis in range(3):
if _item["dim"][axis] != output_size[axis] or _item["spacing"][axis] != spacing[axis]:
keep_mask = False
if keep_mask:
# if decide to keep this mask, we pack the information of this mask and add to final output.
candidate = {
"pseudo_label": os.path.join(mask_foldername, _item["pseudo_label_filename"]),
"spacing": _item["spacing"],
"dim": _item["dim"],
}
# Conditionally add the label to the candidate dictionary
if "label_filename" in _item:
candidate["label"] = os.path.join(mask_foldername, _item["label_filename"])
candidate_masks.append(candidate)
if len(candidate_masks) == 0 and not check_spacing_and_output_size:
raise ValueError("Cannot find body region with given anatomy list.")
return candidate_masks
|