maisi_ct_generative / scripts /augmentation.py
Venn's picture
Upload maisi_ct_generative version 1.0.0
02aa18d verified
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
import torch.nn.functional as F
from monai.transforms import Rand3DElastic, RandAffine, RandZoom
from monai.utils import ensure_tuple_rep
def erode3d(input_tensor, erosion=3):
# Define the structuring element
erosion = ensure_tuple_rep(erosion, 3)
structuring_element = torch.ones(1, 1, erosion[0], erosion[1], erosion[2]).to(input_tensor.device)
# Pad the input tensor to handle border pixels
input_padded = F.pad(
input_tensor.float().unsqueeze(0).unsqueeze(0),
(erosion[0] // 2, erosion[0] // 2, erosion[1] // 2, erosion[1] // 2, erosion[2] // 2, erosion[2] // 2),
mode="constant",
value=1.0,
)
# Apply erosion operation
output = F.conv3d(input_padded, structuring_element, padding=0)
# Set output values based on the minimum value within the structuring element
output = torch.where(output == torch.sum(structuring_element), 1.0, 0.0)
return output.squeeze(0).squeeze(0)
def dilate3d(input_tensor, erosion=3):
# Define the structuring element
erosion = ensure_tuple_rep(erosion, 3)
structuring_element = torch.ones(1, 1, erosion[0], erosion[1], erosion[2]).to(input_tensor.device)
# Pad the input tensor to handle border pixels
input_padded = F.pad(
input_tensor.float().unsqueeze(0).unsqueeze(0),
(erosion[0] // 2, erosion[0] // 2, erosion[1] // 2, erosion[1] // 2, erosion[2] // 2, erosion[2] // 2),
mode="constant",
value=1.0,
)
# Apply erosion operation
output = F.conv3d(input_padded, structuring_element, padding=0)
# Set output values based on the minimum value within the structuring element
output = torch.where(output > 0, 1.0, 0.0)
return output.squeeze(0).squeeze(0)
def augmentation_tumor_bone(pt_nda, output_size, random_seed):
volume = pt_nda.squeeze(0)
real_l_volume_ = torch.zeros_like(volume)
real_l_volume_[volume == 128] = 1
real_l_volume_ = real_l_volume_.to(torch.uint8)
elastic = RandAffine(
mode="nearest",
prob=1.0,
translate_range=(5, 5, 0),
rotate_range=(0, 0, 0.1),
scale_range=(0.15, 0.15, 0),
padding_mode="zeros",
)
elastic.set_random_state(seed=random_seed)
tumor_szie = torch.sum((real_l_volume_ > 0).float())
###########################
# remove pred in pseudo_label in real lesion region
volume[real_l_volume_ > 0] = 200
###########################
if tumor_szie > 0:
# get organ mask
organ_mask = (
torch.logical_and(33 <= volume, volume <= 56).float()
+ torch.logical_and(63 <= volume, volume <= 97).float()
+ (volume == 127).float()
+ (volume == 114).float()
+ real_l_volume_
)
organ_mask = (organ_mask > 0).float()
cnt = 0
while True:
threshold = 0.8 if cnt < 40 else 0.75
real_l_volume = real_l_volume_
# random distor mask
distored_mask = elastic((real_l_volume > 0).cuda(), spatial_size=tuple(output_size)).as_tensor()
real_l_volume = distored_mask * organ_mask
cnt += 1
print(torch.sum(real_l_volume), "|", tumor_szie * threshold)
if torch.sum(real_l_volume) >= tumor_szie * threshold:
real_l_volume = dilate3d(real_l_volume.squeeze(0), erosion=5)
real_l_volume = erode3d(real_l_volume, erosion=5).unsqueeze(0).to(torch.uint8)
break
else:
real_l_volume = real_l_volume_
volume[real_l_volume == 1] = 128
pt_nda = volume.unsqueeze(0)
return pt_nda
def augmentation_tumor_liver(pt_nda, output_size, random_seed):
volume = pt_nda.squeeze(0)
real_l_volume_ = torch.zeros_like(volume)
real_l_volume_[volume == 1] = 1
real_l_volume_[volume == 26] = 2
real_l_volume_ = real_l_volume_.to(torch.uint8)
elastic = Rand3DElastic(
mode="nearest",
prob=1.0,
sigma_range=(5, 8),
magnitude_range=(100, 200),
translate_range=(10, 10, 10),
rotate_range=(np.pi / 36, np.pi / 36, np.pi / 36),
scale_range=(0.2, 0.2, 0.2),
padding_mode="zeros",
)
elastic.set_random_state(seed=random_seed)
tumor_szie = torch.sum(real_l_volume_ == 2)
###########################
# remove pred organ labels
volume[volume == 1] = 0
volume[volume == 26] = 0
# before move tumor maks, full the original location by organ labels
volume[real_l_volume_ == 1] = 1
volume[real_l_volume_ == 2] = 1
###########################
while True:
real_l_volume = real_l_volume_
# random distor mask
real_l_volume = elastic((real_l_volume == 2).cuda(), spatial_size=tuple(output_size)).as_tensor()
# get organ mask
organ_mask = (real_l_volume_ == 1).float() + (real_l_volume_ == 2).float()
organ_mask = dilate3d(organ_mask.squeeze(0), erosion=5)
organ_mask = erode3d(organ_mask, erosion=5).unsqueeze(0)
real_l_volume = real_l_volume * organ_mask
print(torch.sum(real_l_volume), "|", tumor_szie * 0.80)
if torch.sum(real_l_volume) >= tumor_szie * 0.80:
real_l_volume = dilate3d(real_l_volume.squeeze(0), erosion=5)
real_l_volume = erode3d(real_l_volume, erosion=5).unsqueeze(0)
break
volume[real_l_volume == 1] = 26
pt_nda = volume.unsqueeze(0)
return pt_nda
def augmentation_tumor_lung(pt_nda, output_size, random_seed):
volume = pt_nda.squeeze(0)
real_l_volume_ = torch.zeros_like(volume)
real_l_volume_[volume == 23] = 1
real_l_volume_ = real_l_volume_.to(torch.uint8)
elastic = Rand3DElastic(
mode="nearest",
prob=1.0,
sigma_range=(5, 8),
magnitude_range=(100, 200),
translate_range=(20, 20, 20),
rotate_range=(np.pi / 36, np.pi / 36, np.pi),
scale_range=(0.15, 0.15, 0.15),
padding_mode="zeros",
)
elastic.set_random_state(seed=random_seed)
tumor_szie = torch.sum(real_l_volume_)
# before move lung tumor maks, full the original location by lung labels
new_real_l_volume_ = dilate3d(real_l_volume_.squeeze(0), erosion=3)
new_real_l_volume_ = new_real_l_volume_.unsqueeze(0)
new_real_l_volume_[real_l_volume_ > 0] = 0
new_real_l_volume_[volume < 28] = 0
new_real_l_volume_[volume > 32] = 0
tmp = volume[(volume * new_real_l_volume_).nonzero(as_tuple=True)].view(-1)
mode = torch.mode(tmp, 0)[0].item()
print(mode)
assert 28 <= mode <= 32
volume[real_l_volume_.bool()] = mode
###########################
if tumor_szie > 0:
# aug
while True:
real_l_volume = real_l_volume_
# random distor mask
real_l_volume = elastic(real_l_volume, spatial_size=tuple(output_size)).as_tensor()
# get lung mask v2 (133 order)
lung_mask = (
(volume == 28).float()
+ (volume == 29).float()
+ (volume == 30).float()
+ (volume == 31).float()
+ (volume == 32).float()
)
lung_mask = dilate3d(lung_mask.squeeze(0), erosion=5)
lung_mask = erode3d(lung_mask, erosion=5).unsqueeze(0)
real_l_volume = real_l_volume * lung_mask
print(torch.sum(real_l_volume), "|", tumor_szie * 0.85)
if torch.sum(real_l_volume) >= tumor_szie * 0.85:
real_l_volume = dilate3d(real_l_volume.squeeze(0), erosion=5)
real_l_volume = erode3d(real_l_volume, erosion=5).unsqueeze(0).to(torch.uint8)
break
else:
real_l_volume = real_l_volume_
volume[real_l_volume == 1] = 23
pt_nda = volume.unsqueeze(0)
return pt_nda
def augmentation_tumor_pancreas(pt_nda, output_size, random_seed):
volume = pt_nda.squeeze(0)
real_l_volume_ = torch.zeros_like(volume)
real_l_volume_[volume == 4] = 1
real_l_volume_[volume == 24] = 2
real_l_volume_ = real_l_volume_.to(torch.uint8)
elastic = Rand3DElastic(
mode="nearest",
prob=1.0,
sigma_range=(5, 8),
magnitude_range=(100, 200),
translate_range=(15, 15, 15),
rotate_range=(np.pi / 36, np.pi / 36, np.pi / 36),
scale_range=(0.1, 0.1, 0.1),
padding_mode="zeros",
)
elastic.set_random_state(seed=random_seed)
tumor_szie = torch.sum(real_l_volume_ == 2)
###########################
# remove pred organ labels
volume[volume == 24] = 0
volume[volume == 4] = 0
# before move tumor maks, full the original location by organ labels
volume[real_l_volume_ == 1] = 4
volume[real_l_volume_ == 2] = 4
###########################
while True:
real_l_volume = real_l_volume_
# random distor mask
real_l_volume = elastic((real_l_volume == 2).cuda(), spatial_size=tuple(output_size)).as_tensor()
# get organ mask
organ_mask = (real_l_volume_ == 1).float() + (real_l_volume_ == 2).float()
organ_mask = dilate3d(organ_mask.squeeze(0), erosion=5)
organ_mask = erode3d(organ_mask, erosion=5).unsqueeze(0)
real_l_volume = real_l_volume * organ_mask
print(torch.sum(real_l_volume), "|", tumor_szie * 0.80)
if torch.sum(real_l_volume) >= tumor_szie * 0.80:
real_l_volume = dilate3d(real_l_volume.squeeze(0), erosion=5)
real_l_volume = erode3d(real_l_volume, erosion=5).unsqueeze(0)
break
volume[real_l_volume == 1] = 24
pt_nda = volume.unsqueeze(0)
return pt_nda
def augmentation_tumor_colon(pt_nda, output_size, random_seed):
volume = pt_nda.squeeze(0)
real_l_volume_ = torch.zeros_like(volume)
real_l_volume_[volume == 27] = 1
real_l_volume_ = real_l_volume_.to(torch.uint8)
elastic = Rand3DElastic(
mode="nearest",
prob=1.0,
sigma_range=(5, 8),
magnitude_range=(100, 200),
translate_range=(5, 5, 5),
rotate_range=(np.pi / 36, np.pi / 36, np.pi / 36),
scale_range=(0.1, 0.1, 0.1),
padding_mode="zeros",
)
elastic.set_random_state(seed=random_seed)
tumor_szie = torch.sum(real_l_volume_)
###########################
# before move tumor maks, full the original location by organ labels
volume[real_l_volume_.bool()] = 62
###########################
if tumor_szie > 0:
# get organ mask
organ_mask = (volume == 62).float()
organ_mask = dilate3d(organ_mask.squeeze(0), erosion=5)
organ_mask = erode3d(organ_mask, erosion=5).unsqueeze(0)
# cnt = 0
cnt = 0
while True:
threshold = 0.8
real_l_volume = real_l_volume_
if cnt < 20:
# random distor mask
distored_mask = elastic((real_l_volume == 1).cuda(), spatial_size=tuple(output_size)).as_tensor()
real_l_volume = distored_mask * organ_mask
elif 20 <= cnt < 40:
threshold = 0.75
else:
break
real_l_volume = real_l_volume * organ_mask
print(torch.sum(real_l_volume), "|", tumor_szie * threshold)
cnt += 1
if torch.sum(real_l_volume) >= tumor_szie * threshold:
real_l_volume = dilate3d(real_l_volume.squeeze(0), erosion=5)
real_l_volume = erode3d(real_l_volume, erosion=5).unsqueeze(0).to(torch.uint8)
break
else:
real_l_volume = real_l_volume_
# break
volume[real_l_volume == 1] = 27
pt_nda = volume.unsqueeze(0)
return pt_nda
def augmentation_body(pt_nda, random_seed):
volume = pt_nda.squeeze(0)
zoom = RandZoom(min_zoom=0.99, max_zoom=1.01, mode="nearest", align_corners=None, prob=1.0)
zoom.set_random_state(seed=random_seed)
volume = zoom(volume)
pt_nda = volume.unsqueeze(0)
return pt_nda
def augmentation(pt_nda, output_size, random_seed):
label_list = torch.unique(pt_nda)
label_list = list(label_list.cpu().numpy())
if 128 in label_list:
print("augmenting bone lesion/tumor")
pt_nda = augmentation_tumor_bone(pt_nda, output_size, random_seed)
elif 26 in label_list:
print("augmenting liver tumor")
pt_nda = augmentation_tumor_liver(pt_nda, output_size, random_seed)
elif 23 in label_list:
print("augmenting lung tumor")
pt_nda = augmentation_tumor_lung(pt_nda, output_size, random_seed)
elif 24 in label_list:
print("augmenting pancreas tumor")
pt_nda = augmentation_tumor_pancreas(pt_nda, output_size, random_seed)
elif 27 in label_list:
print("augmenting colon tumor")
pt_nda = augmentation_tumor_colon(pt_nda, output_size, random_seed)
else:
print("augmenting body")
pt_nda = augmentation_body(pt_nda, random_seed)
return pt_nda