|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
|
|
|
|
def get_masked_data(label_data, image_data, labels): |
|
""" |
|
Extracts and returns the image data corresponding to specified labels within a 3D volume. |
|
|
|
This function efficiently masks the `image_data` array based on the provided `labels` in the `label_data` array. |
|
The function handles cases with both a large and small number of labels, optimizing performance accordingly. |
|
|
|
Args: |
|
label_data (np.ndarray): A NumPy array containing label data, representing different anatomical |
|
regions or classes in a 3D medical image. |
|
image_data (np.ndarray): A NumPy array containing the image data from which the relevant regions |
|
will be extracted. |
|
labels (list of int): A list of integers representing the label values to be used for masking. |
|
|
|
Returns: |
|
np.ndarray: A NumPy array containing the elements of `image_data` that correspond to the specified |
|
labels in `label_data`. If no labels are provided, an empty array is returned. |
|
|
|
Raises: |
|
ValueError: If `image_data` and `label_data` do not have the same shape. |
|
|
|
Example: |
|
label_int_dict = {"liver": [1], "kidney": [5, 14]} |
|
masked_data = get_masked_data(label_data, image_data, label_int_dict["kidney"]) |
|
""" |
|
|
|
|
|
if image_data.shape != label_data.shape: |
|
raise ValueError( |
|
f"Shape mismatch: image_data has shape {image_data.shape}, " |
|
f"but label_data has shape {label_data.shape}. They must be the same." |
|
) |
|
|
|
if not labels: |
|
return np.array([]) |
|
|
|
labels = list(set(labels)) |
|
|
|
|
|
num_label_acceleration_thresh = 3 |
|
if len(labels) >= num_label_acceleration_thresh: |
|
|
|
mask = np.isin(label_data, labels) |
|
else: |
|
|
|
mask = np.zeros_like(label_data, dtype=bool) |
|
for label in labels: |
|
mask = np.logical_or(mask, label_data == label) |
|
|
|
|
|
masked_data = image_data[mask.astype(bool)] |
|
|
|
return masked_data |
|
|
|
|
|
def is_outlier(statistics, image_data, label_data, label_int_dict): |
|
""" |
|
Perform a quality check on the generated image by comparing its statistics with precomputed thresholds. |
|
|
|
Args: |
|
statistics (dict): Dictionary containing precomputed statistics including mean +/- 3sigma ranges. |
|
image_data (np.ndarray): The image data to be checked, typically a 3D NumPy array. |
|
label_data (np.ndarray): The label data corresponding to the image, used for masking regions of interest. |
|
label_int_dict (dict): Dictionary mapping label names to their corresponding integer lists. |
|
e.g., label_int_dict = {"liver": [1], "kidney": [5, 14]} |
|
|
|
Returns: |
|
dict: A dictionary with labels as keys, each containing the quality check result, |
|
including whether it's an outlier, the median value, and the thresholds used. |
|
If no data is found for a label, the median value will be `None` and `is_outlier` will be `False`. |
|
|
|
Example: |
|
# Example input data |
|
statistics = { |
|
"liver": { |
|
"sigma_6_low": -21.596463547885904, |
|
"sigma_6_high": 156.27881534763367 |
|
}, |
|
"kidney": { |
|
"sigma_6_low": -15.0, |
|
"sigma_6_high": 120.0 |
|
} |
|
} |
|
label_int_dict = { |
|
"liver": [1], |
|
"kidney": [5, 14] |
|
} |
|
image_data = np.random.rand(100, 100, 100) # Replace with actual image data |
|
label_data = np.zeros((100, 100, 100)) # Replace with actual label data |
|
label_data[40:60, 40:60, 40:60] = 1 # Example region for liver |
|
label_data[70:90, 70:90, 70:90] = 5 # Example region for kidney |
|
result = is_outlier(statistics, image_data, label_data, label_int_dict) |
|
""" |
|
outlier_results = {} |
|
|
|
for label_name, stats in statistics.items(): |
|
|
|
low_thresh = min(stats["sigma_6_low"], stats["percentile_0_5"]) |
|
high_thresh = max(stats["sigma_6_high"], stats["percentile_99_5"]) |
|
|
|
if label_name == "bone": |
|
high_thresh = 1000.0 |
|
|
|
|
|
labels = label_int_dict.get(label_name, []) |
|
masked_data = get_masked_data(label_data, image_data, labels) |
|
masked_data = masked_data[~np.isnan(masked_data)] |
|
|
|
if len(masked_data) == 0 or masked_data.size == 0: |
|
outlier_results[label_name] = { |
|
"is_outlier": False, |
|
"median_value": None, |
|
"low_thresh": low_thresh, |
|
"high_thresh": high_thresh, |
|
} |
|
continue |
|
|
|
|
|
median_value = np.nanmedian(masked_data) |
|
|
|
if np.isnan(median_value): |
|
median_value = None |
|
is_outlier = False |
|
else: |
|
|
|
is_outlier = median_value < low_thresh or median_value > high_thresh |
|
|
|
outlier_results[label_name] = { |
|
"is_outlier": is_outlier, |
|
"median_value": median_value, |
|
"low_thresh": low_thresh, |
|
"high_thresh": high_thresh, |
|
} |
|
|
|
return outlier_results |
|
|