Venn's picture
Upload maisi_ct_generative version 1.0.0
02aa18d verified
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import os
import random
import time
from datetime import datetime
import monai
import torch
from monai.data import MetaTensor
from monai.inferers.inferer import DiffusionInferer, SlidingWindowInferer
from monai.transforms import Compose, SaveImage
from monai.utils import set_determinism
from tqdm import tqdm
from .augmentation import augmentation
from .find_masks import find_masks
from .quality_check import is_outlier
from .utils import binarize_labels, dynamic_infer, general_mask_generation_post_process, remap_labels
modality_mapping = {
"unknown": 0,
"ct": 1,
"ct_wo_contrast": 2,
"ct_contrast": 3,
"mri": 8,
"mri_t1": 9,
"mri_t2": 10,
"mri_flair": 11,
"mri_pd": 12,
"mri_dwi": 13,
"mri_adc": 14,
"mri_ssfp": 15,
"mri_mra": 16,
} # current version only support "ct"
class ReconModel(torch.nn.Module):
"""
A PyTorch module for reconstructing images from latent representations.
Attributes:
autoencoder: The autoencoder model used for decoding.
scale_factor: Scaling factor applied to the input before decoding.
"""
def __init__(self, autoencoder, scale_factor):
super().__init__()
self.autoencoder = autoencoder
self.scale_factor = scale_factor
def forward(self, z):
"""
Decode the input latent representation to an image.
Args:
z (torch.Tensor): The input latent representation.
Returns:
torch.Tensor: The reconstructed image.
"""
recon_pt_nda = self.autoencoder.decode_stage_2_outputs(z / self.scale_factor)
return recon_pt_nda
def initialize_noise_latents(latent_shape, device):
"""
Initialize random noise latents for image generation with float16.
Args:
latent_shape (tuple): The shape of the latent space.
device (torch.device): The device to create the tensor on.
Returns:
torch.Tensor: Initialized noise latents.
"""
return torch.randn([1] + list(latent_shape)).half().to(device)
def ldm_conditional_sample_one_mask(
autoencoder,
diffusion_unet,
noise_scheduler,
scale_factor,
anatomy_size,
device,
latent_shape,
label_dict_remap_json,
num_inference_steps=1000,
autoencoder_sliding_window_infer_size=(96, 96, 96),
autoencoder_sliding_window_infer_overlap=0.6667,
):
"""
Generate a single synthetic mask using a latent diffusion model.
Args:
autoencoder (nn.Module): The autoencoder model.
diffusion_unet (nn.Module): The diffusion U-Net model.
noise_scheduler: The noise scheduler for the diffusion process.
scale_factor (float): Scaling factor for the latent space.
anatomy_size (torch.Tensor): Tensor specifying the desired anatomy sizes.
device (torch.device): The device to run the computation on.
latent_shape (tuple): The shape of the latent space.
label_dict_remap_json (str): Path to the JSON file for label remapping.
num_inference_steps (int): Number of inference steps for the diffusion process.
autoencoder_sliding_window_infer_size (list, optional): Size of the sliding window for inference. Defaults to [96, 96, 96].
autoencoder_sliding_window_infer_overlap (float, optional): Overlap ratio for sliding window inference. Defaults to 0.6667.
Returns:
torch.Tensor: The generated synthetic mask.
"""
recon_model = ReconModel(autoencoder=autoencoder, scale_factor=scale_factor).to(device)
with torch.no_grad(), torch.amp.autocast("cuda"):
# Generate random noise
latents = initialize_noise_latents(latent_shape, device)
anatomy_size = torch.FloatTensor(anatomy_size).unsqueeze(0).unsqueeze(0).half().to(device)
# synthesize latents
noise_scheduler.set_timesteps(num_inference_steps=num_inference_steps)
inferer_ddpm = DiffusionInferer(noise_scheduler)
latents = inferer_ddpm.sample(
input_noise=latents,
diffusion_model=diffusion_unet,
scheduler=noise_scheduler,
verbose=True,
conditioning=anatomy_size.to(device),
)
# decode latents to synthesized masks
inferer = SlidingWindowInferer(
roi_size=autoencoder_sliding_window_infer_size,
sw_batch_size=1,
progress=True,
mode="gaussian",
overlap=autoencoder_sliding_window_infer_overlap,
device=torch.device("cpu"),
sw_device=device,
)
synthetic_mask = dynamic_infer(inferer, recon_model, latents)
synthetic_mask = torch.softmax(synthetic_mask, dim=1)
synthetic_mask = torch.argmax(synthetic_mask, dim=1, keepdim=True)
# mapping raw index to 132 labels
synthetic_mask = remap_labels(synthetic_mask, label_dict_remap_json)
# post process
data = synthetic_mask.squeeze().cpu().detach().numpy()
labels = [23, 24, 26, 27, 128]
target_tumor_label = None
for index, size in enumerate(anatomy_size[0, 0, 5:10]):
if size.item() != -1.0:
target_tumor_label = labels[index]
logging.info(f"target_tumor_label for postprocess:{target_tumor_label}")
data = general_mask_generation_post_process(data, target_tumor_label=target_tumor_label, device=device)
synthetic_mask = torch.from_numpy(data).unsqueeze(0).unsqueeze(0).to(device)
return synthetic_mask
def ldm_conditional_sample_one_image(
autoencoder,
diffusion_unet,
controlnet,
noise_scheduler,
scale_factor,
device,
combine_label_or,
modality_tensor,
spacing_tensor,
latent_shape,
output_size,
noise_factor,
num_inference_steps=1000,
autoencoder_sliding_window_infer_size=(96, 96, 96),
autoencoder_sliding_window_infer_overlap=0.6667,
):
"""
Generate a single synthetic image using a latent diffusion model with controlnet.
Args:
autoencoder (nn.Module): The autoencoder model.
diffusion_unet (nn.Module): The diffusion U-Net model.
controlnet (nn.Module): The controlnet model.
noise_scheduler: The noise scheduler for the diffusion process.
scale_factor (float): Scaling factor for the latent space.
device (torch.device): The device to run the computation on.
combine_label_or (torch.Tensor): The combined label tensor.
spacing_tensor (torch.Tensor): Tensor specifying the spacing.
latent_shape (tuple): The shape of the latent space.
output_size (tuple): The desired output size of the image.
noise_factor (float): Factor to scale the initial noise.
num_inference_steps (int): Number of inference steps for the diffusion process.
autoencoder_sliding_window_infer_size (list, optional): Size of the sliding window for inference. Defaults to [96, 96, 96].
autoencoder_sliding_window_infer_overlap (float, optional): Overlap ratio for sliding window inference. Defaults to 0.6667.
Returns:
tuple: A tuple containing the synthetic image and its corresponding label.
"""
# CT image intensity range
a_min = -1000
a_max = 1000
# autoencoder output intensity range
b_min = 0.0
b_max = 1
recon_model = ReconModel(autoencoder=autoencoder, scale_factor=scale_factor).to(device)
with torch.no_grad(), torch.amp.autocast("cuda", enabled=True):
logging.info("---- Start generating latent features... ----")
start_time = time.time()
# generate segmentation mask
combine_label = combine_label_or.to(device)
if (
output_size[0] != combine_label.shape[2]
or output_size[1] != combine_label.shape[3]
or output_size[2] != combine_label.shape[4]
):
logging.info(
"output_size is not a desired value. Need to interpolate the mask to match "
"with output_size. The result image will be very low quality."
)
combine_label = torch.nn.functional.interpolate(combine_label, size=output_size, mode="nearest")
controlnet_cond_vis = binarize_labels(combine_label.as_tensor().long()).half()
# Generate random noise
latents = initialize_noise_latents(latent_shape, device) * noise_factor
# synthesize latents
noise_scheduler.set_timesteps(
num_inference_steps=num_inference_steps, input_img_size=torch.prod(torch.tensor(latent_shape[-3:]))
)
# synthesize latents
guidance_scale = 0 # API for classifier-free guidence, not used in this version
all_next_timesteps = torch.cat(
(noise_scheduler.timesteps[1:], torch.tensor([0], dtype=noise_scheduler.timesteps.dtype))
)
for t, next_t in tqdm(
zip(noise_scheduler.timesteps, all_next_timesteps),
total=min(len(noise_scheduler.timesteps), len(all_next_timesteps)),
):
timesteps = torch.Tensor((t,)).to(device)
if guidance_scale == 0:
down_block_res_samples, mid_block_res_sample = controlnet(
x=latents, timesteps=timesteps, controlnet_cond=controlnet_cond_vis, class_labels=modality_tensor
)
predicted_velocity = diffusion_unet(
x=latents,
timesteps=timesteps,
spacing_tensor=spacing_tensor,
class_labels=modality_tensor,
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
)
else:
down_block_res_samples, mid_block_res_sample = controlnet(
x=torch.cat([latents] * 2),
timesteps=torch.cat([timesteps] * 2),
controlnet_cond=torch.cat([controlnet_cond_vis] * 2),
class_labels=torch.cat([modality_tensor, torch.zeros_like(modality_tensor)]),
)
model_t, model_uncond = diffusion_unet(
x=torch.cat([latents] * 2),
timesteps=timesteps,
spacing_tensor=torch.cat([timesteps] * 2),
class_labels=torch.cat([modality_tensor, torch.zeros_like(modality_tensor)]),
down_block_additional_residuals=down_block_res_samples,
mid_block_additional_residual=mid_block_res_sample,
).chunk(2)
predicted_velocity = model_uncond + guidance_scale * (model_t - model_uncond)
latents, _ = noise_scheduler.step(predicted_velocity, t, latents, next_timestep=next_t)
end_time = time.time()
logging.info(f"---- Latent features generation time: {end_time - start_time} seconds ----")
del predicted_velocity
torch.cuda.empty_cache()
# decode latents to synthesized images
logging.info("---- Start decoding latent features into images... ----")
inferer = SlidingWindowInferer(
roi_size=autoencoder_sliding_window_infer_size,
sw_batch_size=1,
progress=True,
mode="gaussian",
overlap=autoencoder_sliding_window_infer_overlap,
device=torch.device("cpu"),
sw_device=device,
)
start_time = time.time()
synthetic_images = dynamic_infer(inferer, recon_model, latents)
synthetic_images = torch.clip(synthetic_images, b_min, b_max).cpu()
end_time = time.time()
logging.info(f"---- Image decoding time: {end_time - start_time} seconds ----")
# post processing:
# project output to [0, 1]
synthetic_images = (synthetic_images - b_min) / (b_max - b_min)
# project output to [-1000, 1000]
synthetic_images = synthetic_images * (a_max - a_min) + a_min
# regularize background intensities
synthetic_images = crop_img_body_mask(synthetic_images, combine_label)
torch.cuda.empty_cache()
return synthetic_images, combine_label
def filter_mask_with_organs(combine_label, anatomy_list):
"""
Filter a mask to only include specified organs.
Args:
combine_label (torch.Tensor): The input mask.
anatomy_list (list): List of organ labels to keep.
Returns:
torch.Tensor: The filtered mask.
"""
# final output mask file has shape of output_size, contains labels in anatomy_list
# it is already interpolated to target size
combine_label = combine_label.long()
# filter out the organs that are not in anatomy_list
for i in range(len(anatomy_list)):
organ = anatomy_list[i]
# replace it with a negative value so it will get mixed
combine_label[combine_label == organ] = -(i + 1)
# zero-out voxels with value not in anatomy_list
combine_label[combine_label > 0] = 0
# output positive values
combine_label = -combine_label
return combine_label
def crop_img_body_mask(synthetic_images, combine_label):
"""
Crop the synthetic image using a body mask.
Args:
synthetic_images (torch.Tensor): The synthetic images.
combine_label (torch.Tensor): The body mask.
Returns:
torch.Tensor: The cropped synthetic images.
"""
synthetic_images[combine_label == 0] = -1000
return synthetic_images
def check_input(body_region, anatomy_list, label_dict_json, output_size, spacing, controllable_anatomy_size):
"""
Validate input parameters for image generation.
Args:
body_region (list): List of body regions.
anatomy_list (list): List of anatomical structures.
label_dict_json (str): Path to the label dictionary JSON file.
output_size (tuple): Desired output size of the image.
spacing (tuple): Desired voxel spacing.
controllable_anatomy_size (list): List of tuples specifying controllable anatomy sizes.
Raises:
ValueError: If any input parameter is invalid.
"""
# check output_size and spacing format
if output_size[0] != output_size[1]:
raise ValueError(f"The first two components of output_size need to be equal, yet got {output_size}.")
if (output_size[0] not in [256, 384, 512]) or (output_size[2] not in [128, 256, 384, 512, 640, 768]):
raise ValueError(
(
"The output_size[0] have to be chosen from [256, 384, 512], and output_size[2] "
f"have to be chosen from [128, 256, 384, 512, 640, 768], yet got {output_size}."
)
)
if spacing[0] != spacing[1]:
raise ValueError(f"The first two components of spacing need to be equal, yet got {spacing}.")
if spacing[0] < 0.5 or spacing[0] > 3.0 or spacing[2] < 0.5 or spacing[2] > 5.0:
raise ValueError(
f"spacing[0] have to be between 0.5 and 3.0 mm, spacing[2] have to be between 0.5 and 5.0 mm, yet got {spacing}."
)
if (
output_size[0] * spacing[0] < 256
or output_size[2] * spacing[2] < 128
or output_size[0] * spacing[0] > 640
or output_size[2] * spacing[2] > 2000
):
fov = [output_size[axis] * spacing[axis] for axis in range(3)]
raise ValueError(
(
f"`'spacing'({spacing}mm) and 'output_size'({output_size}) together decide the output field of view (FOV). "
f"The FOV will be {fov}mm. We recommend the FOV in x and y axis to be at least 256mm for head, and at least "
"384mm for other body regions like abdomen, and less than 640mm. "
"For z-axis, we require it to be at least 128mm and less than 2000mm."
)
)
# check controllable_anatomy_size format
if len(controllable_anatomy_size) > 10:
raise ValueError(
(
"The output_size[0] have to be chosen from [256, 384, 512], and output_size[2] "
f"have to be chosen from [128, 256, 384, 512, 640, 768], yet got {output_size}."
)
)
available_controllable_organ = ["liver", "gallbladder", "stomach", "pancreas", "colon"]
available_controllable_tumor = [
"hepatic tumor",
"bone lesion",
"lung tumor",
"colon cancer primaries",
"pancreatic tumor",
]
available_controllable_anatomy = available_controllable_organ + available_controllable_tumor
controllable_tumor = []
controllable_organ = []
for controllable_anatomy_size_pair in controllable_anatomy_size:
if controllable_anatomy_size_pair[0] not in available_controllable_anatomy:
raise ValueError(
(
f"The controllable_anatomy have to be chosen from {available_controllable_anatomy}, "
f"yet got {controllable_anatomy_size_pair[0]}."
)
)
if controllable_anatomy_size_pair[0] in available_controllable_tumor:
controllable_tumor += [controllable_anatomy_size_pair[0]]
if controllable_anatomy_size_pair[0] in available_controllable_organ:
controllable_organ += [controllable_anatomy_size_pair[0]]
if controllable_anatomy_size_pair[1] == -1:
continue
if controllable_anatomy_size_pair[1] < 0 or controllable_anatomy_size_pair[1] > 1.0:
raise ValueError(
(
"The controllable size scale have to be between 0 and 1,0, or equal to -1, "
f"yet got {controllable_anatomy_size_pair[1]}."
)
)
if len(controllable_tumor + controllable_organ) != len(list(set(controllable_tumor + controllable_organ))):
raise ValueError(f"Please do not repeat controllable_anatomy. Got {controllable_tumor + controllable_organ}.")
if len(controllable_tumor) > 1:
raise ValueError(f"Only one controllable tumor is supported. Yet got {controllable_tumor}.")
if len(controllable_anatomy_size) > 0:
logging.info(
(
"`controllable_anatomy_size` is not empty.\nWe will ignore `body_region` and `anatomy_list` "
f"and synthesize based on `controllable_anatomy_size`: ({controllable_anatomy_size})."
)
)
else:
logging.info(
(f"`controllable_anatomy_size` is empty.\nWe will synthesize based on `anatomy_list`: ({anatomy_list}).")
)
# check body_region format
available_body_region = ["head", "chest", "thorax", "abdomen", "pelvis", "lower"]
for region in body_region:
if region not in available_body_region:
raise ValueError(
f"The components in body_region have to be chosen from {available_body_region}, yet got {region}."
)
# check anatomy_list format
with open(label_dict_json) as f:
label_dict = json.load(f)
for anatomy in anatomy_list:
if anatomy not in label_dict.keys():
raise ValueError(
f"The components in anatomy_list have to be chosen from {label_dict.keys()}, yet got {anatomy}."
)
logging.info(f"The generate results will have voxel size to be {spacing} mm, volume size to be {output_size}.")
return
class LDMSampler:
"""
A sampler class for generating synthetic medical images and masks using latent diffusion models.
Attributes:
Various attributes related to model configuration, input parameters, and generation settings.
"""
def __init__(
self,
body_region,
anatomy_list,
modality,
all_mask_files_json,
all_anatomy_size_condtions_json,
all_mask_files_base_dir,
label_dict_json,
label_dict_remap_json,
autoencoder,
diffusion_unet,
controlnet,
noise_scheduler,
scale_factor,
mask_generation_autoencoder,
mask_generation_diffusion_unet,
mask_generation_scale_factor,
mask_generation_noise_scheduler,
device,
latent_shape,
mask_generation_latent_shape,
output_size,
output_dir,
controllable_anatomy_size,
image_output_ext=".nii.gz",
label_output_ext=".nii.gz",
real_img_median_statistics="./configs/image_median_statistics.json",
spacing=(1, 1, 1),
num_inference_steps=None,
mask_generation_num_inference_steps=None,
random_seed=None,
autoencoder_sliding_window_infer_size=(96, 96, 96),
autoencoder_sliding_window_infer_overlap=0.6667,
) -> None:
"""
Initialize the LDMSampler with various parameters and models.
Args:
Various parameters related to model configuration, input settings, and output specifications.
"""
self.random_seed = random_seed
if random_seed is not None:
set_determinism(seed=random_seed)
with open(label_dict_json, "r") as f:
label_dict = json.load(f)
self.all_anatomy_size_condtions_json = all_anatomy_size_condtions_json
# intialize variables
self.body_region = body_region
self.anatomy_list = [label_dict[organ] for organ in anatomy_list]
self.modality_int = modality_mapping[modality]
self.all_mask_files_json = all_mask_files_json
self.data_root = all_mask_files_base_dir
self.label_dict_remap_json = label_dict_remap_json
self.autoencoder = autoencoder
self.diffusion_unet = diffusion_unet
self.controlnet = controlnet
self.noise_scheduler = noise_scheduler
self.scale_factor = scale_factor
self.mask_generation_autoencoder = mask_generation_autoencoder
self.mask_generation_diffusion_unet = mask_generation_diffusion_unet
self.mask_generation_scale_factor = mask_generation_scale_factor
self.mask_generation_noise_scheduler = mask_generation_noise_scheduler
self.device = device
self.latent_shape = latent_shape
self.mask_generation_latent_shape = mask_generation_latent_shape
self.output_size = output_size
self.output_dir = output_dir
self.noise_factor = 1.0
self.controllable_anatomy_size = controllable_anatomy_size
if len(self.controllable_anatomy_size):
logging.info("controllable_anatomy_size is given, mask generation is triggered!")
# overwrite the anatomy_list by given organs in self.controllable_anatomy_size
self.anatomy_list = [label_dict[organ_and_size[0]] for organ_and_size in self.controllable_anatomy_size]
self.image_output_ext = image_output_ext
self.label_output_ext = label_output_ext
# Set the default value for number of inference steps to 1000
self.num_inference_steps = num_inference_steps if num_inference_steps is not None else 1000
self.mask_generation_num_inference_steps = (
mask_generation_num_inference_steps if mask_generation_num_inference_steps is not None else 1000
)
if any(size % 16 != 0 for size in autoencoder_sliding_window_infer_size):
raise ValueError(
f"autoencoder_sliding_window_infer_size must be divisible by 16.\n Got {autoencoder_sliding_window_infer_size}"
)
if not (0 <= autoencoder_sliding_window_infer_overlap <= 1):
raise ValueError(
(
"Value of autoencoder_sliding_window_infer_overlap must be between 0 "
f"and 1.\n Got {autoencoder_sliding_window_infer_overlap}"
)
)
self.autoencoder_sliding_window_infer_size = autoencoder_sliding_window_infer_size
self.autoencoder_sliding_window_infer_overlap = autoencoder_sliding_window_infer_overlap
# quality check args
self.max_try_time = 3 # if not pass quality check, will try self.max_try_time times
with open(real_img_median_statistics, "r") as json_file:
self.median_statistics = json.load(json_file)
self.label_int_dict = {
"liver": [1],
"spleen": [3],
"pancreas": [4],
"kidney": [5, 14],
"lung": [28, 29, 30, 31, 31],
"brain": [22],
"hepatic tumor": [26],
"bone lesion": [128],
"lung tumor": [23],
"colon cancer primaries": [27],
"pancreatic tumor": [24],
"bone": list(range(33, 57)) + list(range(63, 98)) + [120, 122, 127],
}
# networks
self.autoencoder.eval()
self.diffusion_unet.eval()
self.controlnet.eval()
self.mask_generation_autoencoder.eval()
self.mask_generation_diffusion_unet.eval()
self.spacing = spacing
self.val_transforms = Compose(
[
monai.transforms.LoadImaged(keys=["pseudo_label"]),
monai.transforms.EnsureChannelFirstd(keys=["pseudo_label"]),
monai.transforms.Orientationd(keys=["pseudo_label"], axcodes="RAS"),
monai.transforms.EnsureTyped(keys=["pseudo_label"], dtype=torch.uint8),
monai.transforms.Lambdad(keys="spacing", func=lambda x: torch.FloatTensor(x)),
monai.transforms.Lambdad(keys="spacing", func=lambda x: x * 1e2),
]
)
logging.info("LDM sampler initialized.")
def sample_multiple_images(self, num_img):
"""
Generate multiple synthetic images and masks.
Args:
num_img (int): Number of images to generate.
"""
output_filenames = []
if len(self.controllable_anatomy_size) > 0:
# we will use mask generation instead of finding candidate masks
# create a dummy selected_mask_files for placeholder
selected_mask_files = list(range(num_img))
# prerpare organ size conditions
anatomy_size_condtion = self.prepare_anatomy_size_condtion(self.controllable_anatomy_size)
else:
need_resample = False
# find candidate mask and save to candidate_mask_files
candidate_mask_files = find_masks(
self.anatomy_list, self.spacing, self.output_size, True, self.all_mask_files_json, self.data_root
)
if len(candidate_mask_files) < num_img:
# if we cannot find enough masks based on the exact match of anatomy list, spacing, and output size,
# then we will try to find the closest mask in terms of spacing, and output size.
logging.info("Resample mask file to get desired output size and spacing")
candidate_mask_files = self.find_closest_masks(num_img)
need_resample = True
selected_mask_files = self.select_mask(candidate_mask_files, num_img)
if len(selected_mask_files) < num_img:
raise ValueError(
(
f"len(selected_mask_files) ({len(selected_mask_files)}) < num_img ({num_img}). "
"This should not happen. Please revisit function select_mask(self, candidate_mask_files, num_img)."
)
)
num_generated_img = 0
for index_s in range(len(selected_mask_files)):
item = selected_mask_files[index_s]
if num_generated_img >= num_img:
break
logging.info("---- Start preparing masks... ----")
start_time = time.time()
logging.info(f"Image will be generated based on {item}.")
if len(self.controllable_anatomy_size) > 0:
# generate a synthetic mask
(combine_label_or, spacing_tensor) = self.prepare_one_mask_and_meta_info(anatomy_size_condtion)
else:
# read in mask file
mask_file = item["mask_file"]
if_aug = item["if_aug"]
(combine_label_or, spacing_tensor) = self.read_mask_information(mask_file)
if need_resample:
combine_label_or = self.ensure_output_size_and_spacing(combine_label_or)
# mask augmentation
if if_aug:
combine_label_or = augmentation(combine_label_or, self.output_size, random_seed=self.random_seed)
end_time = time.time()
logging.info(f"---- Mask preparation time: {end_time - start_time} seconds ----")
torch.cuda.empty_cache()
# generate image/label pairs
modality_tensor = torch.ones_like(spacing_tensor[:, 0]).long() * self.modality_int
# start generation
synthetic_images, synthetic_labels = self.sample_one_pair(combine_label_or, modality_tensor, spacing_tensor)
# synthetic image quality check
pass_quality_check = self.quality_check(
synthetic_images.cpu().detach().numpy(), combine_label_or.cpu().detach().numpy()
)
if pass_quality_check or (num_img - num_generated_img) >= (len(selected_mask_files) - index_s):
if not pass_quality_check:
logging.info(
"Generated image/label pair did not pass quality check, but will still save them. "
"Please consider changing spacing and output_size to facilitate a more realistic setting."
)
num_generated_img = num_generated_img + 1
# save image/label pairs
output_postfix = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
synthetic_labels.meta["filename_or_obj"] = "sample.nii.gz"
synthetic_images = MetaTensor(synthetic_images, meta=synthetic_labels.meta)
img_saver = SaveImage(
output_dir=self.output_dir,
output_postfix=output_postfix + "_image",
output_ext=self.image_output_ext,
separate_folder=False,
)
img_saver(synthetic_images[0])
synthetic_images_filename = os.path.join(
self.output_dir, "sample_" + output_postfix + "_image" + self.image_output_ext
)
# filter out the organs that are not in anatomy_list
synthetic_labels = filter_mask_with_organs(synthetic_labels, self.anatomy_list)
label_saver = SaveImage(
output_dir=self.output_dir,
output_postfix=output_postfix + "_label",
output_ext=self.label_output_ext,
separate_folder=False,
)
label_saver(synthetic_labels[0])
synthetic_labels_filename = os.path.join(
self.output_dir, "sample_" + output_postfix + "_label" + self.label_output_ext
)
output_filenames.append([synthetic_images_filename, synthetic_labels_filename])
else:
logging.info("Generated image/label pair did not pass quality check, will re-generate another pair.")
return output_filenames
def select_mask(self, candidate_mask_files, num_img):
"""
Select mask files for image generation.
Args:
candidate_mask_files (list): List of candidate mask files.
num_img (int): Number of images to generate.
Returns:
list: Selected mask files with augmentation flags.
"""
selected_mask_files = []
random.shuffle(candidate_mask_files)
for n in range(num_img * self.max_try_time):
mask_file = candidate_mask_files[n % len(candidate_mask_files)]
selected_mask_files.append({"mask_file": mask_file, "if_aug": True})
return selected_mask_files
def sample_one_pair(self, combine_label_or_aug, modality_tensor, spacing_tensor):
"""
Generate a single pair of synthetic image and mask.
Args:
combine_label_or_aug (torch.Tensor): Combined label tensor or augmented label.
modality_tensor (torch.Tensor): Tensor specifying the image modality.
spacing_tensor (torch.Tensor): Tensor specifying the spacing.
Returns:
tuple: A tuple containing the synthetic image and its corresponding label.
"""
# generate image/label pairs
synthetic_images, synthetic_labels = ldm_conditional_sample_one_image(
autoencoder=self.autoencoder,
diffusion_unet=self.diffusion_unet,
controlnet=self.controlnet,
noise_scheduler=self.noise_scheduler,
scale_factor=self.scale_factor,
device=self.device,
combine_label_or=combine_label_or_aug,
modality_tensor=modality_tensor,
spacing_tensor=spacing_tensor,
latent_shape=self.latent_shape,
output_size=self.output_size,
noise_factor=self.noise_factor,
num_inference_steps=self.num_inference_steps,
autoencoder_sliding_window_infer_size=self.autoencoder_sliding_window_infer_size,
autoencoder_sliding_window_infer_overlap=self.autoencoder_sliding_window_infer_overlap,
)
return synthetic_images, synthetic_labels
def prepare_anatomy_size_condtion(self, controllable_anatomy_size):
"""
Prepare anatomy size conditions for mask generation.
Args:
controllable_anatomy_size (list): List of tuples specifying controllable anatomy sizes.
Returns:
list: Prepared anatomy size conditions.
"""
anatomy_size_idx = {
"gallbladder": 0,
"liver": 1,
"stomach": 2,
"pancreas": 3,
"colon": 4,
"lung tumor": 5,
"pancreatic tumor": 6,
"hepatic tumor": 7,
"colon cancer primaries": 8,
"bone lesion": 9,
}
provide_anatomy_size = [None for _ in range(10)]
logging.info(f"controllable_anatomy_size: {controllable_anatomy_size}")
for element in controllable_anatomy_size:
anatomy_name, anatomy_size = element
provide_anatomy_size[anatomy_size_idx[anatomy_name]] = anatomy_size
with open(self.all_anatomy_size_condtions_json, "r") as f:
all_anatomy_size_condtions = json.load(f)
# loop through the database and find closest combinations
candidate_list = []
for anatomy_size in all_anatomy_size_condtions:
size = anatomy_size["organ_size"]
diff = 0
for db_size, provide_size in zip(size, provide_anatomy_size):
if provide_size is None:
continue
diff += abs(provide_size - db_size)
candidate_list.append((size, diff))
candidate_condition = sorted(candidate_list, key=lambda x: x[1])[0][0]
# overwrite the anatomy size provided by users
for element in controllable_anatomy_size:
anatomy_name, anatomy_size = element
candidate_condition[anatomy_size_idx[anatomy_name]] = anatomy_size
return candidate_condition
def prepare_one_mask_and_meta_info(self, anatomy_size_condtion):
"""
Prepare a single mask and its associated meta information.
Args:
anatomy_size_condtion (list): Anatomy size conditions.
Returns:
tuple: A tuple containing the prepared mask and associated tensors.
"""
combine_label_or = self.sample_one_mask(anatomy_size=anatomy_size_condtion)
# TODO: current mask generation model only can generate 256^3 volumes with 1.5 mm spacing.
affine = torch.zeros((4, 4))
affine[0, 0] = 1.5
affine[1, 1] = 1.5
affine[2, 2] = 1.5
affine[3, 3] = 1.0 # dummy
combine_label_or = MetaTensor(combine_label_or, affine=affine)
combine_label_or = self.ensure_output_size_and_spacing(combine_label_or)
spacing_tensor = torch.FloatTensor(self.spacing).unsqueeze(0).half().to(self.device) * 1e2
return combine_label_or, spacing_tensor
def sample_one_mask(self, anatomy_size):
"""
Generate a single synthetic mask.
Args:
anatomy_size (list): Anatomy size specifications.
Returns:
torch.Tensor: The generated synthetic mask.
"""
# generate one synthetic mask
synthetic_mask = ldm_conditional_sample_one_mask(
self.mask_generation_autoencoder,
self.mask_generation_diffusion_unet,
self.mask_generation_noise_scheduler,
self.mask_generation_scale_factor,
anatomy_size,
self.device,
self.mask_generation_latent_shape,
label_dict_remap_json=self.label_dict_remap_json,
num_inference_steps=self.mask_generation_num_inference_steps,
autoencoder_sliding_window_infer_size=self.autoencoder_sliding_window_infer_size,
autoencoder_sliding_window_infer_overlap=self.autoencoder_sliding_window_infer_overlap,
)
return synthetic_mask
def ensure_output_size_and_spacing(self, labels, check_contains_target_labels=True):
"""
Ensure the output mask has the correct size and spacing.
Args:
labels (torch.Tensor): Input label tensor.
check_contains_target_labels (bool): Whether to check if the resampled mask contains target labels.
Returns:
torch.Tensor: Resampled label tensor.
Raises:
ValueError: If the resampled mask doesn't contain required class labels.
"""
current_spacing = [labels.affine[0, 0], labels.affine[1, 1], labels.affine[2, 2]]
current_shape = list(labels.squeeze().shape)
need_resample = False
# check spacing
for i, j in zip(current_spacing, self.spacing):
if i != j:
need_resample = True
# check output size
for i, j in zip(current_shape, self.output_size):
if i != j:
need_resample = True
# resample to target size and spacing
if need_resample:
logging.info("Resampling mask to target shape and spacing")
logging.info(f"Resize Spacing: {current_spacing} -> {self.spacing}")
logging.info(f"Output size: {current_shape} -> {self.output_size}")
spacing = monai.transforms.Spacing(pixdim=tuple(self.spacing), mode="nearest")
pad_crop = monai.transforms.ResizeWithPadOrCrop(spatial_size=tuple(self.output_size))
labels = pad_crop(spacing(labels.squeeze(0))).unsqueeze(0).to(labels.dtype)
contained_labels = torch.unique(labels)
if check_contains_target_labels:
# check if the resampled mask still contains those target labels
for anatomy_label in self.anatomy_list:
if anatomy_label not in contained_labels:
raise ValueError(
(
f"Resampled mask does not contain required class labels {anatomy_label}. "
"Please consider increasing the output spacing or specifying a larger output size."
)
)
return labels
def read_mask_information(self, mask_file):
"""
Read mask information from a file.
Args:
mask_file (str): Path to the mask file.
Returns:
tuple: A tuple containing the mask tensor and associated information.
"""
val_data = self.val_transforms(mask_file)
for key in ["pseudo_label", "spacing"]:
val_data[key] = val_data[key].unsqueeze(0).to(self.device)
return (val_data["pseudo_label"], val_data["spacing"])
def find_closest_masks(self, num_img):
"""
Find the closest matching masks from the database.
Args:
num_img (int): Number of images to generate.
Returns:
list: List of closest matching mask candidates.
Raises:
ValueError: If suitable candidates cannot be found.
"""
# first check the database based on anatomy list
candidates = find_masks(
self.anatomy_list, self.spacing, self.output_size, False, self.all_mask_files_json, self.data_root
)
if len(candidates) < num_img:
raise ValueError(f"candidate masks are less than {num_img}).")
# loop through the database and find closest combinations
new_candidates = []
for c in candidates:
diff = 0
include_c = True
for axis in range(3):
if abs(c["dim"][axis]) < self.output_size[axis] - 64:
# we cannot upsample the mask too much
include_c = False
break
# check diff in FOV, major metric
diff += abs(
(abs(c["dim"][axis] * c["spacing"][axis]) - self.output_size[axis] * self.spacing[axis]) / 10
)
# check diff in dim
diff += abs((abs(c["dim"][axis]) - self.output_size[axis]) / 100)
# check diff in spacing
diff += abs(abs(c["spacing"][axis]) - self.spacing[axis])
if include_c:
new_candidates.append((c, diff))
# choose top-2*num_img candidates (at least 5)
new_candidates = sorted(new_candidates, key=lambda x: x[1])[: max(2 * num_img, 5)]
final_candidates = []
# check top-2*num_img candidates and update spacing after resampling
image_loader = monai.transforms.LoadImage(image_only=True, ensure_channel_first=True)
for c, _ in new_candidates:
label = image_loader(c["pseudo_label"])
try:
label = self.ensure_output_size_and_spacing(label.unsqueeze(0))
except ValueError as e:
if "Resampled mask does not contain required class labels" in str(e):
continue
else:
raise e
# get region_index after resample
c["spacing"] = self.spacing
c["dim"] = self.output_size
final_candidates.append(c)
if len(final_candidates) == 0:
raise ValueError("Cannot find body region with given anatomy list.")
return final_candidates
def quality_check(self, image_data, label_data):
"""
Perform a quality check on the generated image.
Args:
image_data (np.ndarray): The generated image.
label_data (np.ndarray): The corresponding whole body mask.
Returns:
bool: True if the image passes the quality check, False otherwise.
"""
outlier_results = is_outlier(self.median_statistics, image_data, label_data, self.label_int_dict)
for label, result in outlier_results.items():
if result.get("is_outlier", False):
logging.info(
(
f"Generated image quality check for label '{label}' failed: median value {result['median_value']} "
f"is outside the acceptable range ({result['low_thresh']} - {result['high_thresh']})."
)
)
return False
return True