|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
from typing import TYPE_CHECKING, Any, Callable, Iterable, Sequence |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from monai.engines.trainer import Trainer |
|
from monai.engines.utils import IterationEvents, PrepareBatchExtraInput, default_metric_cmp_fn |
|
from monai.inferers import Inferer |
|
from monai.networks.schedulers import Scheduler |
|
from monai.transforms import Transform |
|
from monai.utils import IgniteInfo, RankFilter, min_version, optional_import |
|
from monai.utils.enums import CommonKeys as Keys |
|
from torch.optim.optimizer import Optimizer |
|
from torch.utils.data import DataLoader |
|
|
|
from .utils import binarize_labels |
|
|
|
if TYPE_CHECKING: |
|
from ignite.engine import Engine, EventEnum |
|
from ignite.metrics import Metric |
|
else: |
|
Engine, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Engine") |
|
Metric, _ = optional_import("ignite.metrics", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Metric") |
|
EventEnum, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "EventEnum") |
|
|
|
__all__ = ["MAISIControlNetTrainer"] |
|
|
|
|
|
DEFAULT_PREPARE_BATCH = PrepareBatchExtraInput(extra_keys=("dim", "spacing", "top_region_index", "bottom_region_index")) |
|
|
|
|
|
class MAISIControlNetTrainer(Trainer): |
|
""" |
|
Supervised training method with image and label, inherits from ``Trainer`` and ``Workflow``. |
|
Args: |
|
device: an object representing the device on which to run. |
|
max_epochs: the total epoch number for trainer to run. |
|
train_data_loader: Ignite engine use data_loader to run, must be Iterable or torch.DataLoader. |
|
controlnet: controlnet to train in the trainer, should be regular PyTorch `torch.nn.Module`. |
|
diffusion_unet: diffusion_unet used in the trainer, should be regular PyTorch `torch.nn.Module`. |
|
optimizer: the optimizer associated to the detector, should be regular PyTorch optimizer from `torch.optim` |
|
or its subclass. |
|
epoch_length: number of iterations for one epoch, default to `len(train_data_loader)`. |
|
non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously |
|
with respect to the host. For other cases, this argument has no effect. |
|
prepare_batch: function to parse expected data (usually `image`,`box`, `label` and other detector args) |
|
from `engine.state.batch` for every iteration, for more details please refer to: |
|
https://pytorch.org/ignite/generated/ignite.engine.create_supervised_trainer.html. |
|
iteration_update: the callable function for every iteration, expect to accept `engine` |
|
and `engine.state.batch` as inputs, return data will be stored in `engine.state.output`. |
|
if not provided, use `self._iteration()` instead. for more details please refer to: |
|
https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html. |
|
inferer: inference method that execute model forward on input data, like: SlidingWindow, etc. |
|
postprocessing: execute additional transformation for the model output data. |
|
Typically, several Tensor based transforms composed by `Compose`. |
|
key_train_metric: compute metric when every iteration completed, and save average value to |
|
engine.state.metrics when epoch completlabel_set = np.arange(output_classes).tolist()d. |
|
key_train_metric is the main metric to compare and save the checkpoint into files. |
|
additional_metrics: more Ignite metrics that also attach to Ignite Engine. |
|
metric_cmp_fn: function to compare current key metric with previous best key metric value, |
|
it must accept 2 args (current_metric, previous_best) and return a bool result: if `True`, will update |
|
`best_metric` and `best_metric_epoch` with current metric and epoch, default to `greater than`. |
|
train_handlers: every handler is a set of Ignite Event-Handlers, must have `attach` function, like: |
|
CheckpointHandler, StatsHandler, etc. |
|
amp: whether to enable auto-mixed-precision training, default is False. |
|
event_names: additional custom ignite events that will register to the engine. |
|
new events can be a list of str or `ignite.engine.events.EventEnum`. |
|
event_to_attr: a dictionary to map an event to a state attribute, then add to `engine.state`. |
|
for more details, check: https://pytorch.org/ignite/generated/ignite.engine.engine.Engine.html |
|
#ignite.engine.engine.Engine.register_events. |
|
decollate: whether to decollate the batch-first data to a list of data after model computation, |
|
recommend `decollate=True` when `postprocessing` uses components from `monai.transforms`. |
|
default to `True`. |
|
optim_set_to_none: when calling `optimizer.zero_grad()`, instead of setting to zero, set the grads to None. |
|
more details: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html. |
|
to_kwargs: dict of other args for `prepare_batch` API when converting the input data, except for |
|
`device`, `non_blocking`. |
|
amp_kwargs: dict of the args for `torch.cuda.amp.autocast()` API, for more details: |
|
https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.autocast. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
device: torch.device, |
|
max_epochs: int, |
|
train_data_loader: Iterable | DataLoader, |
|
controlnet: torch.nn.Module, |
|
diffusion_unet: torch.nn.Module, |
|
optimizer: Optimizer, |
|
loss_function: Callable, |
|
inferer: Inferer, |
|
noise_scheduler: Scheduler, |
|
epoch_length: int | None = None, |
|
non_blocking: bool = False, |
|
prepare_batch: Callable = DEFAULT_PREPARE_BATCH, |
|
iteration_update: Callable[[Engine, Any], Any] | None = None, |
|
postprocessing: Transform | None = None, |
|
key_train_metric: dict[str, Metric] | None = None, |
|
additional_metrics: dict[str, Metric] | None = None, |
|
metric_cmp_fn: Callable = default_metric_cmp_fn, |
|
train_handlers: Sequence | None = None, |
|
amp: bool = False, |
|
event_names: list[str | EventEnum] | None = None, |
|
event_to_attr: dict | None = None, |
|
decollate: bool = True, |
|
optim_set_to_none: bool = False, |
|
to_kwargs: dict | None = None, |
|
amp_kwargs: dict | None = None, |
|
hyper_kwargs: dict | None = None, |
|
) -> None: |
|
super().__init__( |
|
device=device, |
|
max_epochs=max_epochs, |
|
data_loader=train_data_loader, |
|
epoch_length=epoch_length, |
|
non_blocking=non_blocking, |
|
prepare_batch=prepare_batch, |
|
iteration_update=iteration_update, |
|
postprocessing=postprocessing, |
|
key_metric=key_train_metric, |
|
additional_metrics=additional_metrics, |
|
metric_cmp_fn=metric_cmp_fn, |
|
handlers=train_handlers, |
|
amp=amp, |
|
event_names=event_names, |
|
event_to_attr=event_to_attr, |
|
decollate=decollate, |
|
to_kwargs=to_kwargs, |
|
amp_kwargs=amp_kwargs, |
|
) |
|
|
|
self.controlnet = controlnet |
|
self.diffusion_unet = diffusion_unet |
|
self.optimizer = optimizer |
|
self.loss_function = loss_function |
|
self.inferer = inferer |
|
self.optim_set_to_none = optim_set_to_none |
|
self.hyper_kwargs = hyper_kwargs |
|
self.noise_scheduler = noise_scheduler |
|
self.logger.addFilter(RankFilter()) |
|
for p in self.diffusion_unet.parameters(): |
|
p.requires_grad = False |
|
print("freeze the parameters of the diffusion unet model.") |
|
|
|
def _iteration(self, engine, batchdata: dict[str, torch.Tensor]): |
|
""" |
|
Callback function for the Supervised Training processing logic of 1 iteration in Ignite Engine. |
|
Return below items in a dictionary: |
|
- IMAGE: image Tensor data for model input, already moved to device. |
|
Args: |
|
engine: `Vista3DTrainer` to execute operation for an iteration. |
|
batchdata: input data for this iteration, usually can be dictionary or tuple of Tensor data. |
|
Raises: |
|
ValueError: When ``batchdata`` is None. |
|
""" |
|
|
|
if batchdata is None: |
|
raise ValueError("Must provide batch data for current iteration.") |
|
|
|
inputs, labels, (dim, spacing, top_region_index, bottom_region_index), _ = engine.prepare_batch( |
|
batchdata, engine.state.device, engine.non_blocking, **engine.to_kwargs |
|
) |
|
engine.state.output = {Keys.IMAGE: inputs, Keys.LABEL: labels} |
|
weighted_loss_label = engine.hyper_kwargs["weighted_loss_label"] |
|
weighted_loss = engine.hyper_kwargs["weighted_loss"] |
|
scale_factor = engine.hyper_kwargs["scale_factor"] |
|
|
|
inputs = inputs * scale_factor |
|
|
|
def _compute_pred_loss(): |
|
|
|
noise_shape = list(inputs.shape) |
|
noise = torch.randn(noise_shape, dtype=inputs.dtype).to(inputs.device) |
|
|
|
|
|
controlnet_cond = binarize_labels(labels.as_tensor().to(torch.uint8)).float() |
|
|
|
|
|
timesteps = torch.randint( |
|
0, engine.noise_scheduler.num_train_timesteps, (inputs.shape[0],), device=inputs.device |
|
).long() |
|
|
|
|
|
noisy_latent = engine.noise_scheduler.add_noise(original_samples=inputs, noise=noise, timesteps=timesteps) |
|
|
|
|
|
down_block_res_samples, mid_block_res_sample = engine.controlnet( |
|
x=noisy_latent, timesteps=timesteps, controlnet_cond=controlnet_cond |
|
) |
|
noise_pred = engine.diffusion_unet( |
|
x=noisy_latent, |
|
timesteps=timesteps, |
|
top_region_index_tensor=top_region_index, |
|
bottom_region_index_tensor=bottom_region_index, |
|
spacing_tensor=spacing, |
|
down_block_additional_residuals=down_block_res_samples, |
|
mid_block_additional_residual=mid_block_res_sample, |
|
) |
|
|
|
engine.state.output[Keys.PRED] = noise_pred |
|
engine.fire_event(IterationEvents.FORWARD_COMPLETED) |
|
|
|
if weighted_loss > 1.0: |
|
weights = torch.ones_like(inputs).to(inputs.device) |
|
roi = torch.zeros([noise_shape[0]] + [1] + noise_shape[2:]).to(inputs.device) |
|
interpolate_label = F.interpolate(labels, size=inputs.shape[2:], mode="nearest") |
|
|
|
for label in weighted_loss_label: |
|
roi[interpolate_label == label] = 1 |
|
weights[roi.repeat(1, inputs.shape[1], 1, 1, 1) == 1] = weighted_loss |
|
loss = (F.l1_loss(noise_pred.float(), noise.float(), reduction="none") * weights).mean() |
|
else: |
|
loss = F.l1_loss(noise_pred.float(), noise.float()) |
|
|
|
engine.state.output[Keys.LOSS] = loss |
|
engine.fire_event(IterationEvents.LOSS_COMPLETED) |
|
|
|
engine.controlnet.train() |
|
engine.optimizer.zero_grad(set_to_none=engine.optim_set_to_none) |
|
|
|
if engine.amp and engine.scaler is not None: |
|
with torch.amp.autocast("cuda", **engine.amp_kwargs): |
|
_compute_pred_loss() |
|
engine.scaler.scale(engine.state.output[Keys.LOSS]).backward() |
|
engine.fire_event(IterationEvents.BACKWARD_COMPLETED) |
|
engine.scaler.step(engine.optimizer) |
|
engine.scaler.update() |
|
else: |
|
_compute_pred_loss() |
|
engine.state.output[Keys.LOSS].backward() |
|
engine.fire_event(IterationEvents.BACKWARD_COMPLETED) |
|
engine.optimizer.step() |
|
engine.fire_event(IterationEvents.MODEL_COMPLETED) |
|
return engine.state.output |
|
|