project-monai commited on
Commit
195b442
·
verified ·
1 Parent(s): 0798b5a

Upload multi_organ_segmentation version 0.0.6

Browse files
Files changed (1) hide show
  1. configs/metadata.json +6 -4
configs/metadata.json CHANGED
@@ -1,7 +1,8 @@
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20240725.json",
3
- "version": "0.0.5",
4
  "changelog": {
 
5
  "0.0.5": "update to huggingface hosting",
6
  "0.0.4": "Set image_only to False",
7
  "0.0.3": "Update for stable MONAI version",
@@ -18,9 +19,9 @@
18
  "pyyaml": "6.0.2"
19
  },
20
  "supported_apps": {},
21
- "name": "Abdominal multi-organ segmentation",
22
- "task": "Multi-organ segmentation in abdominal CT",
23
- "description": "DiNTS architectures for volumetric (3D) segmentation of the abdominal from CT image",
24
  "authors": "Chen Shen, Holger R. Roth, Kazunari Misawa, Kensaku Mori",
25
  "copyright": "",
26
  "data_source": "Aichi Cancer Center, Japan",
@@ -31,6 +32,7 @@
31
  "eval_metrics": {
32
  "mean_dice": 0.88
33
  },
 
34
  "references": [
35
  "He, Y., Yang, D., Roth, H., Zhao, C. and Xu, D., 2021. Dints: Differentiable neural network topology search for 3d medical image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5841-5850).",
36
  "Roth, H., Shen C, Oda H., Sugino T., Oda M., Hayashi Y., Misawa K., Mori K., 2018. A multi-scale pyramid of 3D fully convolutional networks for abdominal multi-organ segmentation. International conference on medical image computing and computer-assisted intervention",
 
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20240725.json",
3
+ "version": "0.0.6",
4
  "changelog": {
5
+ "0.0.6": "enhance metadata with improved descriptions",
6
  "0.0.5": "update to huggingface hosting",
7
  "0.0.4": "Set image_only to False",
8
  "0.0.3": "Update for stable MONAI version",
 
19
  "pyyaml": "6.0.2"
20
  },
21
  "supported_apps": {},
22
+ "name": "Multi-organ Abdominal Segmentation",
23
+ "task": "Multi-organ Segmentation in Abdominal CT Images",
24
+ "description": "A 3D segmentation model optimized through Neural Architecture Search (DiNTS) that processes 96x96x96 pixel patches from CT scans to segment eight abdominal organs and structures. The model achieves a mean Dice score of 0.88 across all structures, including liver, spleen, pancreas, stomach, gallbladder, and vascular structures (artery and portal vein).",
25
  "authors": "Chen Shen, Holger R. Roth, Kazunari Misawa, Kensaku Mori",
26
  "copyright": "",
27
  "data_source": "Aichi Cancer Center, Japan",
 
32
  "eval_metrics": {
33
  "mean_dice": 0.88
34
  },
35
+ "intended_use": "This is an example, not to be used for diagnostic purposes",
36
  "references": [
37
  "He, Y., Yang, D., Roth, H., Zhao, C. and Xu, D., 2021. Dints: Differentiable neural network topology search for 3d medical image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5841-5850).",
38
  "Roth, H., Shen C, Oda H., Sugino T., Oda M., Hayashi Y., Misawa K., Mori K., 2018. A multi-scale pyramid of 3D fully convolutional networks for abdominal multi-organ segmentation. International conference on medical image computing and computer-assisted intervention",