Upload multi_organ_segmentation version 0.0.6
Browse files- configs/metadata.json +6 -4
configs/metadata.json
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20240725.json",
|
3 |
-
"version": "0.0.
|
4 |
"changelog": {
|
|
|
5 |
"0.0.5": "update to huggingface hosting",
|
6 |
"0.0.4": "Set image_only to False",
|
7 |
"0.0.3": "Update for stable MONAI version",
|
@@ -18,9 +19,9 @@
|
|
18 |
"pyyaml": "6.0.2"
|
19 |
},
|
20 |
"supported_apps": {},
|
21 |
-
"name": "
|
22 |
-
"task": "Multi-organ
|
23 |
-
"description": "
|
24 |
"authors": "Chen Shen, Holger R. Roth, Kazunari Misawa, Kensaku Mori",
|
25 |
"copyright": "",
|
26 |
"data_source": "Aichi Cancer Center, Japan",
|
@@ -31,6 +32,7 @@
|
|
31 |
"eval_metrics": {
|
32 |
"mean_dice": 0.88
|
33 |
},
|
|
|
34 |
"references": [
|
35 |
"He, Y., Yang, D., Roth, H., Zhao, C. and Xu, D., 2021. Dints: Differentiable neural network topology search for 3d medical image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5841-5850).",
|
36 |
"Roth, H., Shen C, Oda H., Sugino T., Oda M., Hayashi Y., Misawa K., Mori K., 2018. A multi-scale pyramid of 3D fully convolutional networks for abdominal multi-organ segmentation. International conference on medical image computing and computer-assisted intervention",
|
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20240725.json",
|
3 |
+
"version": "0.0.6",
|
4 |
"changelog": {
|
5 |
+
"0.0.6": "enhance metadata with improved descriptions",
|
6 |
"0.0.5": "update to huggingface hosting",
|
7 |
"0.0.4": "Set image_only to False",
|
8 |
"0.0.3": "Update for stable MONAI version",
|
|
|
19 |
"pyyaml": "6.0.2"
|
20 |
},
|
21 |
"supported_apps": {},
|
22 |
+
"name": "Multi-organ Abdominal Segmentation",
|
23 |
+
"task": "Multi-organ Segmentation in Abdominal CT Images",
|
24 |
+
"description": "A 3D segmentation model optimized through Neural Architecture Search (DiNTS) that processes 96x96x96 pixel patches from CT scans to segment eight abdominal organs and structures. The model achieves a mean Dice score of 0.88 across all structures, including liver, spleen, pancreas, stomach, gallbladder, and vascular structures (artery and portal vein).",
|
25 |
"authors": "Chen Shen, Holger R. Roth, Kazunari Misawa, Kensaku Mori",
|
26 |
"copyright": "",
|
27 |
"data_source": "Aichi Cancer Center, Japan",
|
|
|
32 |
"eval_metrics": {
|
33 |
"mean_dice": 0.88
|
34 |
},
|
35 |
+
"intended_use": "This is an example, not to be used for diagnostic purposes",
|
36 |
"references": [
|
37 |
"He, Y., Yang, D., Roth, H., Zhao, C. and Xu, D., 2021. Dints: Differentiable neural network topology search for 3d medical image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5841-5850).",
|
38 |
"Roth, H., Shen C, Oda H., Sugino T., Oda M., Hayashi Y., Misawa K., Mori K., 2018. A multi-scale pyramid of 3D fully convolutional networks for abdominal multi-organ segmentation. International conference on medical image computing and computer-assisted intervention",
|