|
{ |
|
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_hovernet_20221124.json", |
|
"version": "0.2.8", |
|
"changelog": { |
|
"0.2.8": "enhance metadata with improved descriptions", |
|
"0.2.7": "update to huggingface hosting", |
|
"0.2.6": "update tensorrt benchmark results", |
|
"0.2.5": "enable tensorrt", |
|
"0.2.4": "update to use monai 1.3.1", |
|
"0.2.3": "remove meta_dict usage", |
|
"0.2.2": "add requiremnts for torchvision", |
|
"0.2.1": "fix the wrong GPU index issue of multi-node", |
|
"0.2.0": "Update README for how to download dataset", |
|
"0.1.9": "add RAM warning", |
|
"0.1.8": "Update README for pretrained weights and save metrics in evaluate", |
|
"0.1.7": "Update README Formatting", |
|
"0.1.6": "add non-deterministic note", |
|
"0.1.5": "update benchmark on A100", |
|
"0.1.4": "adapt to BundleWorkflow interface", |
|
"0.1.3": "add name tag", |
|
"0.1.2": "update the workflow figure", |
|
"0.1.1": "update to use monai 1.1.0", |
|
"0.1.0": "complete the model package" |
|
}, |
|
"monai_version": "1.4.0", |
|
"pytorch_version": "2.4.0", |
|
"numpy_version": "1.24.4", |
|
"optional_packages_version": { |
|
"scikit-image": "0.23.2", |
|
"torchvision": "0.19.0", |
|
"scipy": "1.13.1", |
|
"tqdm": "4.66.4", |
|
"pillow": "10.4.0", |
|
"pytorch-ignite": "0.4.11", |
|
"tensorboard": "2.17.0", |
|
"nibabel": "5.2.1" |
|
}, |
|
"name": "HoVer-Net: Nuclear Segmentation and Classification", |
|
"task": "Multi-task Nuclear Segmentation and Classification in H&E Histology", |
|
"description": "A multi-task learning model based on the HoVer-Net architecture that simultaneously performs nuclei segmentation and type classification in H&E-stained histology images. The model processes 256x256 pixel RGB patches and outputs three complementary predictions: binary nuclear segmentation (Dice score: 0.83), hover maps for instance separation, and pixel-level nuclear type classification.", |
|
"authors": "MONAI team", |
|
"copyright": "Copyright (c) MONAI Consortium", |
|
"data_source": "CoNSeP Dataset from https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet/", |
|
"data_type": "numpy", |
|
"image_classes": "RGB image with intensity between 0 and 255", |
|
"label_classes": "a dictionary contains binary nuclear segmentation, hover map and pixel-level classification", |
|
"pred_classes": "a dictionary contains scalar probability for binary nuclear segmentation, hover map and pixel-level classification", |
|
"eval_metrics": { |
|
"Binary Dice": 0.8291 |
|
}, |
|
"intended_use": "This is an example, not to be used for diagnostic purposes", |
|
"references": [ |
|
"Simon Graham. 'HoVer-Net: Simultaneous Segmentation and Classification of Nuclei in Multi-Tissue Histology Images.' Medical Image Analysis, 2019. https://arxiv.org/abs/1812.06499" |
|
], |
|
"network_data_format": { |
|
"inputs": { |
|
"image": { |
|
"type": "image", |
|
"format": "magnitude", |
|
"num_channels": 3, |
|
"spatial_shape": [ |
|
"256", |
|
"256" |
|
], |
|
"dtype": "float32", |
|
"value_range": [ |
|
0, |
|
255 |
|
], |
|
"is_patch_data": true, |
|
"channel_def": { |
|
"0": "image" |
|
} |
|
} |
|
}, |
|
"outputs": { |
|
"nucleus_prediction": { |
|
"type": "probability", |
|
"format": "segmentation", |
|
"num_channels": 3, |
|
"spatial_shape": [ |
|
"164", |
|
"164" |
|
], |
|
"dtype": "float32", |
|
"value_range": [ |
|
0, |
|
1 |
|
], |
|
"is_patch_data": true, |
|
"channel_def": { |
|
"0": "background", |
|
"1": "nuclei" |
|
} |
|
}, |
|
"horizontal_vertical": { |
|
"type": "probability", |
|
"format": "regression", |
|
"num_channels": 2, |
|
"spatial_shape": [ |
|
"164", |
|
"164" |
|
], |
|
"dtype": "float32", |
|
"value_range": [ |
|
0, |
|
1 |
|
], |
|
"is_patch_data": true, |
|
"channel_def": { |
|
"0": "horizontal distances map", |
|
"1": "vertical distances map" |
|
} |
|
}, |
|
"type_prediction": { |
|
"type": "probability", |
|
"format": "classification", |
|
"num_channels": 2, |
|
"spatial_shape": [ |
|
"164", |
|
"164" |
|
], |
|
"dtype": "float32", |
|
"value_range": [ |
|
0, |
|
1 |
|
], |
|
"is_patch_data": true, |
|
"channel_def": { |
|
"0": "background", |
|
"1": "type of nucleus for each pixel" |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|