File size: 5,905 Bytes
a0ae4d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This example shows how to efficiently compute Dice scores for pairs of segmentation prediction
and references in multi-processing based on MONAI's metrics API.
It can even run on multi-nodes.
Main steps to set up the distributed data parallel:
- Execute `torchrun` to create processes on every node for every process.
It receives parameters as below:
`--nproc_per_node=NUM_PROCESSES_PER_NODE`
`--nnodes=NUM_NODES`
For more details, refer to https://github.com/pytorch/pytorch/blob/master/torch/distributed/run.py.
Alternatively, we can also use `torch.multiprocessing.spawn` to start program, but it that case, need to handle
all the above parameters and compute `rank` manually, then set to `init_process_group`, etc.
`torchrun` is even more efficient than `torch.multiprocessing.spawn`.
- Use `init_process_group` to initialize every process.
- Partition the saved predictions and labels into ranks for parallel computation.
- Compute `Dice Metric` on every process, reduce the results after synchronization.
Note:
`torchrun` will launch `nnodes * nproc_per_node = world_size` processes in total.
Example script to execute this program on a single node with 2 processes:
`torchrun --nproc_per_node=2 compute_metric.py`
Referring to: https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
"""
import os
import torch
import torch.distributed as dist
from monai.data import partition_dataset
from monai.handlers import write_metrics_reports
from monai.metrics import DiceMetric
from monai.transforms import (
AddLabelNamesd,
AsDiscreted,
Compose,
EnsureChannelFirstd,
LoadImaged,
Orientationd,
ToDeviced,
)
from monai.utils import string_list_all_gather
from scripts.monai_utils import CopyFilenamesd
def compute(datalist, output_dir):
# generate synthetic data for the example
local_rank = int(os.environ["LOCAL_RANK"])
# initialize the distributed evaluation process, change to gloo backend if computing on CPU
dist.init_process_group(backend="nccl", init_method="env://")
# split data for every subprocess, for example, 16 processes compute in parallel
data_part = partition_dataset(
data=datalist, num_partitions=dist.get_world_size(), shuffle=False, even_divisible=False
)[dist.get_rank()]
device = torch.device(f"cuda:{local_rank}")
torch.cuda.set_device(device)
# define transforms for predictions and labels
# labels = {'background': 0, 'liver': 1, 'spleen': 2, 'pancreas': 3}
transforms = Compose(
[
CopyFilenamesd(keys="label"),
LoadImaged(keys=["pred", "label"]),
ToDeviced(keys=["pred", "label"], device=device),
EnsureChannelFirstd(keys=["pred", "label"]),
Orientationd(keys=("pred", "label"), axcodes="RAS"),
AsDiscreted(keys=("pred", "label"), argmax=(False, False), to_onehot=(4, 4)),
]
)
data_part = [transforms(item) for item in data_part]
# compute metrics for current process
metric = DiceMetric(include_background=False, reduction="mean", get_not_nans=False)
metric(y_pred=[i["pred"] for i in data_part], y=[i["label"] for i in data_part])
filenames = [item["filename"] for item in data_part]
# all-gather results from all the processes and reduce for final result
result = metric.aggregate().item()
filenames = string_list_all_gather(strings=filenames)
if local_rank == 0:
print("mean dice: ", result)
# generate metrics reports at: output/mean_dice_raw.csv, output/mean_dice_summary.csv, output/metrics.csv
write_metrics_reports(
save_dir=output_dir,
images=filenames,
metrics={"mean_dice": result},
metric_details={"mean_dice": metric.get_buffer()},
summary_ops="*",
)
metric.reset()
dist.destroy_process_group()
def compute_single_node(datalist, output_dir):
local_rank = int(os.environ["LOCAL_RANK"])
filenames = [d["label"].split("/")[-1] for d in datalist]
data_part = datalist
device = torch.device(f"cuda:{local_rank}")
torch.cuda.set_device(device)
# define transforms for predictions and labels
labels = {"background": 0, "liver": 1, "spleen": 2, "pancreas": 3}
transforms = Compose(
[
LoadImaged(keys=["pred", "label"]),
ToDeviced(keys=["pred", "label"], device=device),
EnsureChannelFirstd(keys=["pred", "label"]),
Orientationd(keys=("pred", "label"), axcodes="RAS"),
AddLabelNamesd(keys=("pred", "label"), label_names=labels),
AsDiscreted(keys=("pred", "label"), argmax=(False, False), to_onehot=(4, 4)),
]
)
data_part = [transforms(item) for item in data_part]
# compute metrics for current process
metric = DiceMetric(include_background=False, reduction="mean", get_not_nans=False)
for d in datalist:
d = transforms(d)
metric(y_pred=[d["pred"]], y=[d["label"]])
result = metric.aggregate().item()
print("mean dice: ", result)
write_metrics_reports(
save_dir=output_dir,
images=filenames,
metrics={"mean_dice": result},
metric_details={"mean_dice": metric.get_buffer()},
summary_ops="*",
)
metric.reset()
|