# Copyright 2020 - 2021 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import warnings from typing import List from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR, _LRScheduler __all__ = ["LinearLR", "ExponentialLR"] class _LRSchedulerMONAI(_LRScheduler): """Base class for increasing the learning rate between two boundaries over a number of iterations""" def __init__(self, optimizer: Optimizer, end_lr: float, num_iter: int, last_epoch: int = -1) -> None: """ Args: optimizer: wrapped optimizer. end_lr: the final learning rate. num_iter: the number of iterations over which the test occurs. last_epoch: the index of last epoch. Returns: None """ self.end_lr = end_lr self.num_iter = num_iter super(_LRSchedulerMONAI, self).__init__(optimizer, last_epoch) class LinearLR(_LRSchedulerMONAI): """Linearly increases the learning rate between two boundaries over a number of iterations. """ def get_lr(self): r = self.last_epoch / (self.num_iter - 1) return [base_lr + r * (self.end_lr - base_lr) for base_lr in self.base_lrs] class ExponentialLR(_LRSchedulerMONAI): """Exponentially increases the learning rate between two boundaries over a number of iterations. """ def get_lr(self): r = self.last_epoch / (self.num_iter - 1) return [base_lr * (self.end_lr / base_lr) ** r for base_lr in self.base_lrs] class WarmupCosineSchedule(LambdaLR): """Linear warmup and then cosine decay. Based on https://huggingface.co/ implementation. """ def __init__( self, optimizer: Optimizer, warmup_steps: int, t_total: int, cycles: float = 0.5, last_epoch: int = -1 ) -> None: """ Args: optimizer: wrapped optimizer. warmup_steps: number of warmup iterations. t_total: total number of training iterations. cycles: cosine cycles parameter. last_epoch: the index of last epoch. Returns: None """ self.warmup_steps = warmup_steps self.t_total = t_total self.cycles = cycles super(WarmupCosineSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch) def lr_lambda(self, step): if step < self.warmup_steps: return float(step) / float(max(1.0, self.warmup_steps)) progress = float(step - self.warmup_steps) / float(max(1, self.t_total - self.warmup_steps)) return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(self.cycles) * 2.0 * progress))) class LinearWarmupCosineAnnealingLR(_LRScheduler): def __init__( self, optimizer: Optimizer, warmup_epochs: int, max_epochs: int, warmup_start_lr: float = 0.0, eta_min: float = 0.0, last_epoch: int = -1, ) -> None: """ Args: optimizer (Optimizer): Wrapped optimizer. warmup_epochs (int): Maximum number of iterations for linear warmup max_epochs (int): Maximum number of iterations warmup_start_lr (float): Learning rate to start the linear warmup. Default: 0. eta_min (float): Minimum learning rate. Default: 0. last_epoch (int): The index of last epoch. Default: -1. """ self.warmup_epochs = warmup_epochs self.max_epochs = max_epochs self.warmup_start_lr = warmup_start_lr self.eta_min = eta_min super(LinearWarmupCosineAnnealingLR, self).__init__(optimizer, last_epoch) def get_lr(self) -> List[float]: """ Compute learning rate using chainable form of the scheduler """ if not self._get_lr_called_within_step: warnings.warn( "To get the last learning rate computed by the scheduler, " "please use `get_last_lr()`.", UserWarning ) if self.last_epoch == 0: return [self.warmup_start_lr] * len(self.base_lrs) elif self.last_epoch < self.warmup_epochs: return [ group["lr"] + (base_lr - self.warmup_start_lr) / (self.warmup_epochs - 1) for base_lr, group in zip(self.base_lrs, self.optimizer.param_groups) ] elif self.last_epoch == self.warmup_epochs: return self.base_lrs elif (self.last_epoch - 1 - self.max_epochs) % (2 * (self.max_epochs - self.warmup_epochs)) == 0: return [ group["lr"] + (base_lr - self.eta_min) * (1 - math.cos(math.pi / (self.max_epochs - self.warmup_epochs))) / 2 for base_lr, group in zip(self.base_lrs, self.optimizer.param_groups) ] return [ (1 + math.cos(math.pi * (self.last_epoch - self.warmup_epochs) / (self.max_epochs - self.warmup_epochs))) / ( 1 + math.cos( math.pi * (self.last_epoch - self.warmup_epochs - 1) / (self.max_epochs - self.warmup_epochs) ) ) * (group["lr"] - self.eta_min) + self.eta_min for group in self.optimizer.param_groups ] def _get_closed_form_lr(self) -> List[float]: """ Called when epoch is passed as a param to the `step` function of the scheduler. """ if self.last_epoch < self.warmup_epochs: return [ self.warmup_start_lr + self.last_epoch * (base_lr - self.warmup_start_lr) / (self.warmup_epochs - 1) for base_lr in self.base_lrs ] return [ self.eta_min + 0.5 * (base_lr - self.eta_min) * (1 + math.cos(math.pi * (self.last_epoch - self.warmup_epochs) / (self.max_epochs - self.warmup_epochs))) for base_lr in self.base_lrs ]