import argparse import glob import json import logging import os import sys import monai from sklearn.model_selection import train_test_split def produce_datalist_splits(datalist, splits: list = None, train_split: float = 0.80, valid_test_split: float = 0.50): """ This function is used to split the dataset. It will produce "train_size" number of samples for training. """ if splits is None: splits = ["test"] if "train" in splits: train_list, other_list = train_test_split(datalist, train_size=train_split) if "valid" in splits: val_list, test_list = train_test_split(other_list, train_size=valid_test_split) return {"training": train_list, "validation": val_list, "testing": test_list} else: return {"training": train_list, "testing": other_list} elif "valid" in splits: val_list, test_list = train_test_split(datalist, train_size=valid_test_split) return {"validation": val_list, "testing": test_list} else: return {"testing": datalist} def keep_image_label_pairs_only(a_images, a_labels, i_folder, l_folder): image_names = [a.split("/")[-1] for a in a_images] label_names = [a.split("/")[-1] for a in a_labels] # Check if all_labels == all_images, if all_images < all_labels, truncate all_labels # image_set = set(image_names) # label_set = set(label_names) # labelmissing = image_set.difference(label_set) # Find names labels not in images # imagemissing = label_set.difference(image_set) # print('Data_path: ', a_images[0]) # print('Data folder: ',a_images[0].split('/')[-2]) # print('Labels missing for: ', len(labelmissing)) # print('Images missing for: ', len(imagemissing)) a_images = sorted([os.path.join(i_folder, a) for a in image_names if a in label_names]) # Keep only labels that have a scan image_names = [a.split("/")[-1] for a in a_images] a_labels = sorted([os.path.join(l_folder, a) for a in label_names if a in image_names]) return a_images, a_labels def parse_files(images_folder, labels_folder, file_extension_pattern): logging.info(f"parsing files at: {os.path.join(images_folder, file_extension_pattern)}") all_images = sorted(glob.glob(os.path.join(images_folder, file_extension_pattern))) all_labels = sorted(glob.glob(os.path.join(labels_folder, file_extension_pattern))) return all_images, all_labels def get_datalist(args, images_folder, labels_folder): file_extension_pattern = "*" + args.file_extension + "*" if type(images_folder) is list: all_images = [] all_labels = [] for ifolder, lfolder in zip(images_folder, labels_folder): a_images, a_labels = parse_files(ifolder, lfolder, file_extension_pattern) a_images, a_labels = keep_image_label_pairs_only(a_images, a_labels, ifolder, lfolder) all_images += a_images all_labels += a_labels else: all_images, all_labels = parse_files(images_folder, labels_folder, file_extension_pattern) all_images, all_labels = keep_image_label_pairs_only(all_images, all_labels, images_folder, labels_folder) logging.info("Length of all_images: {}".format(len(all_images))) logging.info("Length of all_labels: {}".format(len(all_labels))) datalist = [{"image": image_name, "label": label_name} for image_name, label_name in zip(all_images, all_labels)] # datalist = datalist[0 : args.limit] if args.limit else datalist logging.info(f"datalist length is {len(datalist)}") return datalist def main(args): """ split the dataset and output the data list into a json file. """ data_file_base_dir = args.path output_json = args.output # produce deterministic data splits monai.utils.set_determinism(seed=123) datalist = get_datalist(args, data_file_base_dir, os.path.join(data_file_base_dir, args.labels_folder)) datalist = produce_datalist_splits(datalist, args.splits, args.train_split, args.valid_test_split) with open(output_json, "w") as f: json.dump(datalist, f, ensure_ascii=True, indent=4) logging.info("datalist json file saved to: {}".format(output_json)) if __name__ == "__main__": logging.basicConfig( stream=sys.stdout, level=logging.DEBUG, format="[%(asctime)s.%(msecs)03d][%(levelname)5s](%(name)s) - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", ) parser = argparse.ArgumentParser(description="") parser.add_argument( "--path", type=str, default="/workspace/data/msd/Task07_Pancreas", help="root path of MSD Task07_Pancreas dataset.", ) parser.add_argument( "--output", type=str, default="dataset_0.json", help="relative path of output datalist json file." ) parser.add_argument("--train_split", type=int, default=0.80, help="fraction of Training samples.") parser.add_argument("--valid_test_split", type=int, default=0.50, help="fraction of valid/test samples.") parser.add_argument("--splits", type=list, default=["test"], help="splits to use for train, valid, and test.") parser.add_argument("--file_extension", type=str, default="nii", help="file extension of images and labels.") parser.add_argument("--labels_folder", type=str, default="labels/final", help="labels sub folder name") args = parser.parse_args() main(args)