File size: 16,775 Bytes
fd4ffa6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import gc
import os
import shutil
import time
import warnings
import zipfile
import imageio.v3 as imageio
import numpy as np
from PIL import Image
from pycocotools.coco import COCO
def min_label_precision(label):
lm = label.max()
if lm <= 255:
label = label.astype(np.uint8)
elif lm <= 65535:
label = label.astype(np.uint16)
else:
label = label.astype(np.uint32)
return label
def guess_convert_to_uint16(img, margin=30):
"""
Guess a multiplier that makes all pixels integers.
The input img (each channel) is already in the range 0..1, they must have been converted from uint16 integers as image / scale,
where scale was the unknown max intensity.
We could guess the scale by looking at unique values: 1/np.min(np.diff(np.unique(im)).
the hypothesis is that it will be more accurate recovery of the original image,
instead of doing a simple (img*65535).astype(np.uint16)
"""
for i in range(img.shape[0]):
im = img[i]
if im.any():
start = time.time()
imsmall = im[::4, ::4] # subsample
# imsmall = im
scale = int(np.round(1 / np.min(np.diff(np.unique(imsmall))))) # guessing scale
test = [
(np.sum((imsmall * k) % 1)) for k in range(scale - margin, scale + margin)
] # finetune, guess a multiplier that makes all pixels integers
sid = np.argmin(test) # fine tune scale
if scale < 16000 or scale > 16400:
warnings.warn("scale not in expected range")
print(
"guessing scale",
scale,
test[margin],
"fine tuning scale",
scale - margin + sid,
"dif",
test[sid],
"time",
time.time() - start,
)
scale = 16384
else:
scale = scale - margin + sid
# all the recovered scale values seems to be up to 16384,
# we can stretch to 65535 (for better visualization, most tiff viewers expect that range)
scale = min(65535, scale * 4)
img[i] = im * scale
img = img.astype(np.uint16)
return img
def concatenate_masks(mask_dir):
labeled_mask = None
i = 0
for filename in sorted(os.listdir(mask_dir)):
if filename.endswith(".png"):
mask = imageio.imread(os.path.join(mask_dir, filename))
if labeled_mask is None:
labeled_mask = np.zeros(shape=mask.shape, dtype=np.uint16)
labeled_mask[mask > 0] = i
i = i + 1
if i <= 255:
labeled_mask = labeled_mask.astype(np.uint8)
return labeled_mask
def get_filenames_exclude_masks(dir1, target_string):
filenames = []
# Combine lists of files from both directories
files = os.listdir(dir1)
# Filter files that contain the target string but exclude 'masks'
filenames = [f for f in files if target_string in f and "masks" not in f]
return filenames
def remove_overlaps(masks, medians, overlap_threshold=0.75):
"""replace overlapping mask pixels with mask id of closest mask
if mask fully within another mask, remove it
masks = Nmasks x Ly x Lx
"""
cellpix = masks.sum(axis=0)
igood = np.ones(masks.shape[0], "bool")
for i in masks.sum(axis=(1, 2)).argsort():
npix = float(masks[i].sum())
noverlap = float(masks[i][cellpix > 1].sum())
if noverlap / npix >= overlap_threshold:
igood[i] = False
cellpix[masks[i] > 0] -= 1
# print(cellpix.min())
print(f"removing {(~igood).sum()} masks")
masks = masks[igood]
medians = medians[igood]
cellpix = masks.sum(axis=0)
overlaps = np.array(np.nonzero(cellpix > 1.0)).T
dists = ((overlaps[:, :, np.newaxis] - medians.T) ** 2).sum(axis=1)
tocell = np.argmin(dists, axis=1)
masks[:, overlaps[:, 0], overlaps[:, 1]] = 0
masks[tocell, overlaps[:, 0], overlaps[:, 1]] = 1
# labels should be 1 to mask.shape[0]
masks = masks.astype(int) * np.arange(1, masks.shape[0] + 1, 1, int)[:, np.newaxis, np.newaxis]
masks = masks.sum(axis=0)
gc.collect()
return masks
def livecell_process_files(dataset_dir):
"""
This function takes in the directory of livecell extracted dataset as input and
extracts labels from the coco format.
"""
# "A172", "BT474", "Huh7", "MCF7", "SHSY5Y", "SkBr3", "SKOV3"
# "BV2" is being skipped, runs into memory constraints
cell_type_list = ["A172", "BT474", "Huh7", "MCF7", "SHSY5Y", "SkBr3", "SKOV3"]
for each_cell_tp in cell_type_list:
for split in ["train", "val", "test"]:
print(f"Working on split: {split}")
if split == "test":
img_path = os.path.join(dataset_dir, "images", "livecell_test_images", each_cell_tp)
msk_path = os.path.join(dataset_dir, "images", "livecell_test_images", each_cell_tp + "_masks")
else:
img_path = os.path.join(dataset_dir, "images", "livecell_train_val_images", each_cell_tp)
msk_path = os.path.join(dataset_dir, "images", "livecell_train_val_images", each_cell_tp + "_masks")
if not os.path.exists(msk_path):
os.makedirs(msk_path)
# annotation path
path = os.path.join(
dataset_dir,
"livecell-dataset.s3.eu-central-1.amazonaws.com",
"LIVECell_dataset_2021",
"annotations",
"LIVECell_single_cells",
each_cell_tp.lower(),
split + ".json",
)
annotation = COCO(path)
# Convert COCO format segmentation to binary mask
images = annotation.loadImgs(annotation.getImgIds())
height = []
width = []
for index, im in enumerate(images):
print("Status: {}/{}, Process image: {}".format(index, len(images), im["file_name"]))
if (
im["file_name"] == "BV2_Phase_C4_2_03d00h00m_1.tif"
or im["file_name"] == "BV2_Phase_C4_2_03d00h00m_3.tif"
):
print("Skipping the file: BV2_Phase_C4_2_03d00h00m_1.tif, as it is troublesome")
continue
# load image
img = Image.open(os.path.join(img_path, im["file_name"])).convert("L")
height.append(img.size[0])
width.append(img.size[1])
# load and display instance annotations
annids = annotation.getAnnIds(imgIds=im["id"], iscrowd=None)
anns = annotation.loadAnns(annids)
medians = []
masks = []
k = 0
for ann in anns:
# convert segmentation to binary mask
mask = annotation.annToMask(ann)
masks.append(mask)
ypix, xpix = mask.nonzero()
medians.append(np.array([ypix.mean().astype(np.float32), xpix.mean().astype(np.float32)]))
k += 1
masks = np.array(masks).astype(np.int8)
medians = np.array(medians)
masks = remove_overlaps(masks, medians, overlap_threshold=0.75)
gc.collect()
# ## Create new name for the image and also for the mask and save them as .tif format
# masks_int32 = masks.astype(np.int32)
# mask_pil = Image.fromarray(masks_int32, 'I')
t_filename = im["file_name"]
# cell_type = t_filename.split('_')[0] #? not used
new_mask_name = t_filename[:-4] + "_masks.tif"
# mask_pil.save(os.path.join(msk_path, new_mask_name))
imageio.imwrite(os.path.join(msk_path, new_mask_name), min_label_precision(masks))
gc.collect()
print(f"In total {len(images)} images")
def tissuenet_process_files(dataset_dir):
"""
This function takes in the directory of TissueNet extracted dataset as input and
creates tiled images into 4 from each image
"""
for folder in ["train", "val", "test"]:
if not os.path.exists(os.path.join(dataset_dir, "tissuenet_1.0", folder)):
os.mkdir(os.path.join(dataset_dir, "tissuenet_1.0", folder))
for folder in ["train", "val", "test"]:
print(f"Working on {folder} directory of tissuenet")
f_name = f"tissuenet_1.0/tissuenet_v1.0_{folder}.npz"
dat = np.load(os.path.join(dataset_dir, f_name))
data = dat["X"]
labels = dat["y"]
tissues = dat["tissue_list"]
platforms = dat["platform_list"]
tlabels = np.unique(tissues)
plabels = np.unique(platforms)
tp = 0
for t in tlabels:
for p in plabels:
ix = ((tissues == t) * (platforms == p)).nonzero()[0]
tp += 1
if len(ix) > 0:
print(f"Working on {t} {p}")
for k, i in enumerate(ix):
print(f"Status: {k}/{len(ix)} {tp}/{len(tlabels) * len(plabels)} {t} {p}")
img = data[i].transpose(2, 0, 1)
label = labels[i][:, :, 0]
img = guess_convert_to_uint16(img) # guess inverse scale and convert to uint16
label = min_label_precision(label)
if folder == "train":
img = img.reshape(2, 2, 256, 2, 256).transpose(0, 1, 3, 2, 4).reshape(2, 4, 256, 256)
label = label.reshape(2, 256, 2, 256).transpose(0, 2, 1, 3).reshape(4, 256, 256)
zero_channel = np.zeros((1, img.shape[1], img.shape[2], img.shape[3]), dtype=img.dtype)
# Concatenate the zero channel with the original array along the first dimension
new_array = np.concatenate([img, zero_channel], axis=0)
# reshaped_array = np.transpose(new_array, (1, 2, 3, 0))
for j in range(4):
img_name = f"{folder}/{t}_{p}_{k}_{j}.tif"
mask_name = f"{folder}/{t}_{p}_{k}_{j}_masks.tif"
imageio.imwrite(os.path.join(dataset_dir, "tissuenet_1.0", img_name), new_array[:, j])
imageio.imwrite(os.path.join(dataset_dir, "tissuenet_1.0", mask_name), label[j])
else:
zero_channel = np.zeros((1, img.shape[1], img.shape[2]), dtype=img.dtype)
new_array = np.concatenate([img, zero_channel], axis=0)
# reshaped_array = np.transpose(new_array, (1, 2, 0))
img_name = f"{folder}/{t}_{p}_{k}.tif"
mask_name = f"{folder}/{t}_{p}_{k}_masks.tif"
imageio.imwrite(os.path.join(dataset_dir, "tissuenet_1.0", img_name), new_array)
imageio.imwrite(os.path.join(dataset_dir, "tissuenet_1.0", mask_name), label)
def kaggle_process_files(dataset_dir):
"""
This function takes in the directory of kaggle nuclei extracted dataset as input and
creates a json list with 5 folds.
Please note that there are some hard-coded directory names as per the original dataset.
The function creates an instance processed dataset and then a 5 fold json file based on
the instance processed dataset
"""
data_dir = os.path.join(dataset_dir, "stage1_train")
saving_path = os.path.join(dataset_dir, "instance_processed_data")
if not os.path.exists(saving_path):
os.mkdir(saving_path)
# Process the images and create instance masks first
for idx, subdir in enumerate(os.listdir(data_dir)):
subdir_path = os.path.join(data_dir, subdir)
if os.path.isdir(subdir_path):
images_dir = os.path.join(subdir_path, "images")
masks_dir = os.path.join(subdir_path, "masks")
if os.path.isdir(images_dir) and os.path.isdir(masks_dir):
image_file = os.path.join(images_dir, os.listdir(images_dir)[0])
filename_prefix = f"kg_bowl_{idx}_"
mask_data = concatenate_masks(masks_dir)
# ## Apply channel-wise normalization and use only the first three channels
# image_data = imageio.imread(image_file)
# normalized_image = normalize_image(image_data[..., :3])
# imageio.imwrite(os.path.join(saving_path, f"{filename_prefix}img.tiff"), normalized_image)
shutil.copyfile(image_file, os.path.join(saving_path, f"{filename_prefix}img.png"))
imageio.imwrite(os.path.join(saving_path, f"{filename_prefix}img_masks.tiff"), mask_data)
def extract_zip(zip_path, extract_to):
# Ensure the target directory exists
print(f"Extracting from: {zip_path}")
print(f"Extracting to: {extract_to}")
if not os.path.exists(extract_to):
os.makedirs(extract_to)
# Extract all contents of the zip file to the specified directory
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall(extract_to)
def main():
parser = argparse.ArgumentParser(description="Script to process the cell imaging datasets")
parser.add_argument("--dir", type=str, help="Directory of datasets to process it ...", default="/set/the/path")
args = parser.parse_args()
data_root_path = os.path.normpath(args.dir)
dataset_dict = {
"cellpose_dataset": ["train.zip", "test.zip"],
"deepbacs_dataset": ["deepbacs.zip"],
"kaggle_dataset": ["data-science-bowl-2018.zip"],
"nips_dataset": ["nips_train.zip", "nips_test.zip"],
"omnipose_dataset": ["datasets.zip"],
"tissuenet_dataset": ["tissuenet_v1.0.zip"],
"livecell_dataset": [
"livecell-dataset.s3.eu-central-1.amazonaws.com/LIVECell_dataset_2021/images_per_celltype.zip"
],
}
for key, value in dataset_dict.items():
dataset_path = os.path.join(data_root_path, key)
for each_zipped in value:
in_path = os.path.join(dataset_path, each_zipped)
try:
if os.path.exists(in_path):
print(f"File exists at: {in_path}")
except Exception:
print(f"File: {in_path} was not found")
out_path = os.path.join(dataset_path)
extract_zip(in_path, out_path)
print("If we reached here, that means all zip files got extracted ... Working on pre-processing")
# Looping over all datasets again, Cellpose & Deepbacs have a similar directory structure
for key, _value in dataset_dict.items():
if key == "kaggle_dataset":
print("Needs additional extraction")
train_zip_path = os.path.join(data_root_path, key, "stage1_train.zip")
zip_out_path = os.path.join(data_root_path, key, "stage1_train")
extract_zip(train_zip_path, zip_out_path)
print("Processing Kaggle Dataset ...")
dataset_path = os.path.join(data_root_path, key)
kaggle_process_files(dataset_dir=dataset_path)
elif key == "livecell_dataset":
print("Processing LiveCell Dataset ...")
print(
"Fyi, this processing might take upto an hour, coffee break might be more fruitful in the meanwhile ..."
)
dataset_path = os.path.join(data_root_path, key)
livecell_process_files(dataset_dir=dataset_path)
elif key == "tissuenet_dataset":
print("Processing TissueNet Dataset ...")
dataset_path = os.path.join(data_root_path, key)
tissuenet_process_files(dataset_dir=dataset_path)
return None
if __name__ == "__main__":
main()
|