File size: 11,651 Bytes
fd4ffa6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import cv2
import fastremap
import numpy as np
import PIL
import tifffile
import torch
import torch.nn.functional as F
from cellpose.dynamics import compute_masks, masks_to_flows
from cellpose.metrics import _intersection_over_union, _true_positive
from monai.apps import get_logger
from monai.data import MetaTensor
from monai.transforms import MapTransform
from monai.utils import ImageMetaKey, convert_to_dst_type
logger = get_logger("VistaCell")
class LoadTiffd(MapTransform):
def __call__(self, data):
d = dict(data)
for key in self.key_iterator(d):
filename = d[key]
extension = os.path.splitext(filename)[1][1:]
image_size = None
if extension in ["tif", "tiff"]:
img_array = tifffile.imread(filename) # use tifffile for tif images
image_size = img_array.shape
if len(img_array.shape) == 3 and img_array.shape[-1] <= 3:
img_array = np.transpose(img_array, (2, 0, 1)) # channels first without transpose
else:
img_array = np.array(PIL.Image.open(filename)) # PIL for all other images (png, jpeg)
image_size = img_array.shape
if len(img_array.shape) == 3:
img_array = np.transpose(img_array, (2, 0, 1)) # channels first
if len(img_array.shape) not in [2, 3]:
raise ValueError(
"Unsupported image dimensions, filename " + str(filename) + " shape " + str(img_array.shape)
)
if len(img_array.shape) == 2:
img_array = img_array[np.newaxis] # add channels_first if no channel
if key == "label":
if img_array.shape[0] > 1:
print(
f"Strange case, label with several channels {filename} shape {img_array.shape}, keeping only first"
)
img_array = img_array[[0]]
elif key == "image":
if img_array.shape[0] == 1:
img_array = np.repeat(img_array, repeats=3, axis=0) # if grayscale, repeat as 3 channels
elif img_array.shape[0] == 2:
print(
f"Strange case, image with 2 channels {filename} shape {img_array.shape}, appending first channel to make 3"
)
img_array = np.stack(
(img_array[0], img_array[1], img_array[0]), axis=0
) # this should not happen, we got 2 channel input image
elif img_array.shape[0] > 3:
print(f"Strange case, image with >3 channels, {filename} shape {img_array.shape}, keeping first 3")
img_array = img_array[:3]
meta_data = {ImageMetaKey.FILENAME_OR_OBJ: filename, ImageMetaKey.SPATIAL_SHAPE: image_size}
d[key] = MetaTensor.ensure_torch_and_prune_meta(img_array, meta_data)
return d
class SaveTiffd(MapTransform):
def __init__(self, output_dir, data_root_dir="/", nested_folder=False, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.output_dir = output_dir
self.data_root_dir = data_root_dir
self.nested_folder = nested_folder
def set_data_root_dir(self, data_root_dir):
self.data_root_dir = data_root_dir
def __call__(self, data):
d = dict(data)
os.makedirs(self.output_dir, exist_ok=True)
for key in self.key_iterator(d):
seg = d[key]
filename = seg.meta[ImageMetaKey.FILENAME_OR_OBJ]
basename = os.path.splitext(os.path.basename(filename))[0]
if self.nested_folder:
reldir = os.path.relpath(os.path.dirname(filename), self.data_root_dir)
outdir = os.path.join(self.output_dir, reldir)
os.makedirs(outdir, exist_ok=True)
else:
outdir = self.output_dir
outname = os.path.join(outdir, basename + ".tif")
label = seg.cpu().numpy()
lm = label.max()
if lm <= 255:
label = label.astype(np.uint8)
elif lm <= 65535:
label = label.astype(np.uint16)
else:
label = label.astype(np.uint32)
tifffile.imwrite(outname, label)
print(f"Saving {outname} shape {label.shape} max {label.max()} dtype {label.dtype}")
return d
class LabelsToFlows(MapTransform):
# based on dynamics labels_to_flows()
# created a 3 channel output (foreground, flowx, flowy) and saves under flow (new) key
def __init__(self, flow_key, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.flow_key = flow_key
def __call__(self, data):
d = dict(data)
for key in self.key_iterator(d):
label = d[key].int().numpy()
label = fastremap.renumber(label, in_place=True)[0]
veci = masks_to_flows(label[0], device=None)
flows = np.concatenate((label > 0.5, veci), axis=0).astype(np.float32)
flows = convert_to_dst_type(flows, d[key], dtype=torch.float, device=d[key].device)[0]
d[self.flow_key] = flows
# meta_data = {ImageMetaKey.FILENAME_OR_OBJ : filename}
# d[key] = MetaTensor.ensure_torch_and_prune_meta(img_array, meta_data)
return d
class LogitsToLabels:
def __call__(self, logits, filename=None):
device = logits.device
logits = logits.float().cpu().numpy()
dp = logits[1:] # vectors
cellprob = logits[0] # foreground prob (logit)
try:
pred_mask, p = compute_masks(
dp, cellprob, niter=200, cellprob_threshold=0.4, flow_threshold=0.4, interp=True, device=device
)
except RuntimeError as e:
logger.warning(f"compute_masks failed on GPU retrying on CPU {logits.shape} file {filename} {e}")
pred_mask, p = compute_masks(
dp, cellprob, niter=200, cellprob_threshold=0.4, flow_threshold=0.4, interp=True, device=None
)
return pred_mask, p
class LogitsToLabelsd(MapTransform):
def __call__(self, data):
d = dict(data)
f = LogitsToLabels()
for key in self.key_iterator(d):
pred_mask, p = f(d[key])
d[key] = pred_mask
d[f"{key}_centroids"] = p
return d
class SaveTiffExd(MapTransform):
def __init__(self, output_dir, output_ext=".png", output_postfix="seg", image_key="image", *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.output_dir = output_dir
self.output_ext = output_ext
self.output_postfix = output_postfix
self.image_key = image_key
def to_polygons(self, contours):
polygons = []
for contour in contours:
if len(contour) < 3:
continue
polygons.append(np.squeeze(contour).astype(int).tolist())
return polygons
def __call__(self, data):
d = dict(data)
output_dir = d.get("output_dir", self.output_dir)
output_ext = d.get("output_ext", self.output_ext)
overlayed_masks = d.get("overlayed_masks", False)
output_contours = d.get("output_contours", False)
os.makedirs(self.output_dir, exist_ok=True)
img = d.get(self.image_key, None)
filename = img.meta.get(ImageMetaKey.FILENAME_OR_OBJ) if img is not None else None
image_size = img.meta.get(ImageMetaKey.SPATIAL_SHAPE) if img is not None else None
basename = os.path.splitext(os.path.basename(filename))[0] if filename else "mask"
logger.info(f"File: {filename}; Base: {basename}")
for key in self.key_iterator(d):
label = d[key]
output_filename = f"{basename}{'_' + self.output_postfix if self.output_postfix else ''}{output_ext}"
output_filepath = os.path.join(output_dir, output_filename)
lm = label.max()
logger.info(f"Mask Shape: {label.shape}; Instances: {lm}")
if lm <= 255:
label = label.astype(np.uint8)
elif lm <= 65535:
label = label.astype(np.uint16)
else:
label = label.astype(np.uint32)
tifffile.imwrite(output_filepath, label)
logger.info(f"Saving {output_filepath}")
polygons = []
if overlayed_masks:
logger.info(f"Overlay Masks: Reading original Image: {filename}")
image = cv2.imread(filename)
mask = cv2.imread(output_filepath, 0)
for i in range(1, np.max(mask)):
m = np.zeros_like(mask)
m[mask == i] = 1
color = np.random.choice(range(256), size=3).tolist()
contours, _ = cv2.findContours(m, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
polygons.extend(self.to_polygons(contours))
cv2.drawContours(image, contours, -1, color, 1)
cv2.imwrite(output_filepath, image)
logger.info(f"Overlay Masks: Saving {output_filepath}")
else:
label = cv2.convertScaleAbs(label, alpha=255.0 / label.max())
contours, _ = cv2.findContours(label, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
polygons.extend(self.to_polygons(contours))
meta_json = {"image_size": image_size, "contours": len(polygons)}
with open(os.path.join(output_dir, "meta.json"), "w") as fp:
json.dump(meta_json, fp, indent=2)
if output_contours:
logger.info(f"Total Polygons: {len(polygons)}")
with open(os.path.join(output_dir, "contours.json"), "w") as fp:
json.dump({"count": len(polygons), "contours": polygons}, fp, indent=2)
return d
# Loss (adopted from Cellpose)
class CellLoss:
def __call__(self, y_pred, y):
loss = 0.5 * F.mse_loss(y_pred[:, 1:], 5 * y[:, 1:]) + F.binary_cross_entropy_with_logits(
y_pred[:, [0]], y[:, [0]]
)
return loss
# Accuracy (adopted from Cellpose)
class CellAcc:
def __call__(self, mask_pred, mask_true):
if isinstance(mask_true, torch.Tensor):
mask_true = mask_true.cpu().numpy()
if isinstance(mask_pred, torch.Tensor):
mask_pred = mask_pred.cpu().numpy()
# print("CellAcc mask_true", mask_true.shape, 'max', np.max(mask_true), ",
# "'mask_pred', mask_pred.shape, 'max', np.max(mask_pred) )
iou = _intersection_over_union(mask_true, mask_pred)[1:, 1:]
tp = _true_positive(iou, th=0.5)
fp = np.max(mask_pred) - tp
fn = np.max(mask_true) - tp
ap = tp / (tp + fp + fn)
# print("CellAcc ap", ap, 'tp', tp, 'fp', fp, 'fn', fn)
return ap
|