File size: 50,745 Bytes
fd4ffa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import csv
import gc
import logging
import os
import shutil
import sys
import time
from collections import OrderedDict
from datetime import datetime

import monai.transforms as mt
import numpy as np
import torch
import torch.distributed as dist
import yaml
from monai.apps import get_logger
from monai.auto3dseg.utils import datafold_read
from monai.bundle import BundleWorkflow, ConfigParser
from monai.config import print_config
from monai.data import DataLoader, Dataset, decollate_batch
from monai.metrics import CumulativeAverage
from monai.utils import (
    BundleProperty,
    ImageMetaKey,
    convert_to_dst_type,
    ensure_tuple,
    look_up_option,
    optional_import,
    set_determinism,
)
from torch.cuda.amp import GradScaler, autocast
from torch.utils.data import WeightedRandomSampler
from torch.utils.data.distributed import DistributedSampler
from torch.utils.tensorboard import SummaryWriter

mlflow, mlflow_is_imported = optional_import("mlflow")


if __package__ in (None, ""):
    from cell_distributed_weighted_sampler import DistributedWeightedSampler
    from components import LabelsToFlows, LoadTiffd, LogitsToLabels
    from utils import LOGGING_CONFIG, parsing_bundle_config  # type: ignore
else:
    from .cell_distributed_weighted_sampler import DistributedWeightedSampler
    from .components import LabelsToFlows, LoadTiffd, LogitsToLabels
    from .utils import LOGGING_CONFIG, parsing_bundle_config


logger = get_logger("VistaCell")


class VistaCell(BundleWorkflow):
    """
    Primary vista model training workflow that extends
    monai.bundle.BundleWorkflow for cell segmentation.
    """

    def __init__(self, config_file=None, meta_file=None, logging_file=None, workflow_type="train", **override):
        """
        config_file can be one or a list of config files.
        the rest key-values in the `override` are to override config content.
        """

        parser = parsing_bundle_config(config_file, logging_file=logging_file, meta_file=meta_file)
        parser.update(pairs=override)

        mode = parser.get("mode", None)
        if mode is not None:  # if user specified a `mode` it'll override the workflow_type arg
            workflow_type = mode
        else:
            mode = workflow_type  # if user didn't specify mode, the workflow_type will be used
        super().__init__(workflow_type=workflow_type)
        self._props = {}
        self._set_props = {}
        self.parser = parser

        self.rank = int(os.getenv("LOCAL_RANK", "0"))
        self.global_rank = int(os.getenv("RANK", "0"))
        self.is_distributed = dist.is_available() and dist.is_initialized()

        # check if torchrun or bcprun started it
        if dist.is_torchelastic_launched() or (
            os.getenv("NGC_ARRAY_SIZE") is not None and int(os.getenv("NGC_ARRAY_SIZE")) > 1
        ):
            if dist.is_available():
                dist.init_process_group(backend="nccl", init_method="env://")

            self.is_distributed = dist.is_available() and dist.is_initialized()

            torch.cuda.set_device(self.config("device"))
            dist.barrier()

        else:
            self.is_distributed = False

        if self.global_rank == 0 and self.config("ckpt_path") and not os.path.exists(self.config("ckpt_path")):
            os.makedirs(self.config("ckpt_path"), exist_ok=True)

        if self.rank == 0:
            # make sure the log file exists, as a workaround for mult-gpu logging race condition
            _log_file = self.config("log_output_file", "vista_cell.log")
            _log_file_dir = os.path.dirname(_log_file)
            if _log_file_dir and not os.path.exists(_log_file_dir):
                os.makedirs(_log_file_dir, exist_ok=True)

            print_config()

        if self.is_distributed:
            dist.barrier()

        seed = self.config("seed", None)
        if seed is not None:
            set_determinism(seed)
            logger.info(f"set determinism seed: {self.config('seed', None)}")
        elif torch.cuda.is_available():
            torch.backends.cudnn.benchmark = True
            logger.info("No seed provided, using cudnn.benchmark for performance.")

        if os.path.exists(self.config("ckpt_path")):
            self.parser.export_config_file(
                self.parser.config,
                os.path.join(self.config("ckpt_path"), "working.yaml"),
                fmt="yaml",
                default_flow_style=None,
            )

        self.add_property("network", required=True)
        self.add_property("train_loader", required=True)
        self.add_property("val_dataset", required=False)
        self.add_property("val_loader", required=False)
        self.add_property("val_preprocessing", required=False)
        self.add_property("train_sampler", required=True)
        self.add_property("val_sampler", required=True)
        self.add_property("mode", required=False)
        # set evaluator as required when mode is infer or eval
        # will change after we enhance the bundle properties
        self.evaluator = None

    def _set_property(self, name, property, value):
        # stores user-reset initialized objects that should not be re-initialized.
        self._set_props[name] = value

    def _get_property(self, name, property):
        """
        The customized bundle workflow must implement required properties in:
        https://github.com/Project-MONAI/MONAI/blob/dev/monai/bundle/properties.py.
        """
        if name in self._set_props:
            self._props[name] = self._set_props[name]
            return self._props[name]
        if name in self._props:
            return self._props[name]
        try:
            value = getattr(self, f"get_{name}")()
        except AttributeError as err:
            if property[BundleProperty.REQUIRED]:
                raise ValueError(
                    f"Property '{name}' is required by the bundle format, "
                    f"but the method 'get_{name}' is not implemented."
                ) from err
            raise AttributeError from err
        self._props[name] = value
        return value

    def config(self, name, default="null", **kwargs):
        """read the parsed content (evaluate the expression) from the config file."""
        if default != "null":
            return self.parser.get_parsed_content(name, default=default, **kwargs)
        return self.parser.get_parsed_content(name, **kwargs)

    def initialize(self):
        _log_file = self.config("log_output_file", "vista_cell.log")
        if _log_file is None:
            LOGGING_CONFIG["loggers"]["VistaCell"]["handlers"].remove("file")
            LOGGING_CONFIG["handlers"].pop("file", None)
        else:
            LOGGING_CONFIG["handlers"]["file"]["filename"] = _log_file
        logging.config.dictConfig(LOGGING_CONFIG)

    def get_mode(self):
        mode_str = self.config("mode", self.workflow_type)
        return look_up_option(mode_str, ("train", "training", "infer", "inference", "eval", "evaluation"))

    def run(self):
        if str(self.mode).startswith("train"):
            return self.train()
        if str(self.mode).startswith("infer"):
            return self.infer()
        return self.validate()

    def finalize(self):
        if self.is_distributed:
            dist.destroy_process_group()
        set_determinism(None)

    def get_network_def(self):
        return self.config("network_def")

    def get_network(self):
        pretrained_ckpt_name = self.config("pretrained_ckpt_name", None)
        pretrained_ckpt_path = self.config("pretrained_ckpt_path", None)
        if pretrained_ckpt_name is not None and pretrained_ckpt_path is None:
            # if relative name specified, append to default ckpt_path dir
            pretrained_ckpt_path = os.path.join(self.config("ckpt_path"), pretrained_ckpt_name)

        if pretrained_ckpt_path is not None and not os.path.exists(pretrained_ckpt_path):
            logger.info(f"Pretrained checkpoint {pretrained_ckpt_path} not found.")
            raise ValueError(f"Pretrained checkpoint {pretrained_ckpt_path} not found.")

        if pretrained_ckpt_path is not None and os.path.exists(pretrained_ckpt_path):
            # not loading sam weights, if we're using our own checkpoint
            if "checkpoint" in self.parser.config["network_def"]:
                self.parser.config["network_def"]["checkpoint"] = None
            model = self.config("network")
            self.checkpoint_load(ckpt=pretrained_ckpt_path, model=model)
        else:
            model = self.config("network")

        if self.config("channels_last", False):
            model = model.to(memory_format=torch.channels_last)

        if self.is_distributed:
            model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)

        if self.config("compile", False):
            model = torch.compile(model)

        if self.is_distributed:
            model = torch.nn.parallel.DistributedDataParallel(
                module=model,
                device_ids=[self.rank],
                output_device=self.rank,
                find_unused_parameters=self.config("find_unused_parameters", False),
            )

        pytorch_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
        logger.info(f"total parameters count {pytorch_params} distributed {self.is_distributed}")
        return model

    def get_train_dataset_data(self):
        train_files, valid_files = [], []
        dataset_data = self.config("train#dataset#data")
        val_key = None
        if isinstance(dataset_data, dict):
            val_key = dataset_data.get("key", None)
        data_list_files = dataset_data["data_list_files"]

        if isinstance(data_list_files, str):
            data_list_files = ConfigParser.load_config_file(
                data_list_files
            )  # if it's a path to a separate file with a list of datasets
        else:
            data_list_files = ensure_tuple(data_list_files)

        if self.global_rank == 0:
            print("Using data_list_files ", data_list_files)

        for idx, d in enumerate(data_list_files):
            logger.info(f"adding datalist ({idx}): {d['datalist']}")
            t, v = datafold_read(datalist=d["datalist"], basedir=d["basedir"], fold=self.config("fold"))

            if val_key is not None:
                v, _ = datafold_read(datalist=d["datalist"], basedir=d["basedir"], fold=-1, key=val_key)  # e.g. testing

            for item in t:
                item["datalist_id"] = idx
                item["datalist_count"] = len(t)
            for item in v:
                item["datalist_id"] = idx
                item["datalist_count"] = len(v)
            train_files.extend(t)
            valid_files.extend(v)

        if self.config("quick", False):
            logger.info("quick_data")
            train_files = train_files[:8]
            valid_files = valid_files[:7]
        if not valid_files:
            logger.warning("No validation data found.")
        return train_files, valid_files

    def read_val_datalists(self, section="validate", data_list_files=None, val_key=None, merge=True):
        """read the corresponding folds of the datalist for validation or inference"""
        dataset_data = self.config(f"{section}#dataset#data")

        if isinstance(dataset_data, list):
            return dataset_data

        if data_list_files is None:
            data_list_files = dataset_data["data_list_files"]

        if isinstance(data_list_files, str):
            data_list_files = ConfigParser.load_config_file(
                data_list_files
            )  # if it's a path to a separate file with a list of datasets
        else:
            data_list_files = ensure_tuple(data_list_files)

        if val_key is None:
            val_key = dataset_data.get("key", None)

        val_files, idx = [], 0
        for d in data_list_files:
            if val_key is not None:
                v_files, _ = datafold_read(datalist=d["datalist"], basedir=d["basedir"], fold=-1, key=val_key)
            else:
                _, v_files = datafold_read(datalist=d["datalist"], basedir=d["basedir"], fold=self.config("fold"))
            logger.info(f"adding datalist ({idx} -- {val_key}): {d['datalist']} {len(v_files)}")
            if merge:
                val_files.extend(v_files)
            else:
                val_files.append(v_files)
            idx += 1

        if self.config("quick", False):
            logger.info("quick_data")
            val_files = val_files[:8] if merge else [val_files[0][:8]]
        return val_files

    def get_train_preprocessing(self):
        roi_size = self.config("train#dataset#preprocessing#roi_size")

        train_xforms = []
        train_xforms.append(LoadTiffd(keys=["image", "label"]))
        train_xforms.append(mt.EnsureTyped(keys=["image", "label"], data_type="tensor", dtype=torch.float))
        if self.config("prescale", True):
            print("Prescaling images to 0..1")
            train_xforms.append(mt.ScaleIntensityd(keys="image", minv=0, maxv=1, channel_wise=True))
        train_xforms.append(mt.ScaleIntensityd(keys="image", minv=0, maxv=1, channel_wise=True))
        train_xforms.append(
            mt.ScaleIntensityRangePercentilesd(
                keys="image", lower=1, upper=99, b_min=0.0, b_max=1.0, channel_wise=True, clip=True
            )
        )
        train_xforms.append(mt.SpatialPadd(keys=["image", "label"], spatial_size=roi_size))
        train_xforms.append(
            mt.RandSpatialCropd(keys=["image", "label"], roi_size=roi_size)
        )  # crop roi_size (if image is large)

        # # add augmentations
        train_xforms.extend(
            [
                mt.RandAffined(
                    keys=["image", "label"],
                    prob=0.5,
                    rotate_range=np.pi,  # from -pi to pi
                    scale_range=[-0.5, 0.5],  # from 0.5 to 1.5
                    mode=["bilinear", "nearest"],
                    spatial_size=roi_size,
                    cache_grid=True,
                    padding_mode="border",
                ),
                mt.RandAxisFlipd(keys=["image", "label"], prob=0.5),
                mt.RandGaussianNoised(keys=["image"], prob=0.25, mean=0, std=0.1),
                mt.RandAdjustContrastd(keys=["image"], prob=0.25, gamma=(1, 2)),
                mt.RandGaussianSmoothd(keys=["image"], prob=0.25, sigma_x=(1, 2)),
                mt.RandHistogramShiftd(keys=["image"], prob=0.25, num_control_points=3),
                mt.RandGaussianSharpend(keys=["image"], prob=0.25),
            ]
        )

        train_xforms.append(
            LabelsToFlows(keys="label", flow_key="flow")
        )  # finally create new key "flows" with 3 channels 1) foreground 2) dx flow 3) dy flow

        return train_xforms

    def get_val_preprocessing(self):
        val_xforms = []
        val_xforms.append(LoadTiffd(keys=["image", "label"], allow_missing_keys=True))
        val_xforms.append(
            mt.EnsureTyped(keys=["image", "label"], data_type="tensor", dtype=torch.float, allow_missing_keys=True)
        )

        if self.config("prescale", True):
            print("Prescaling val images to 0..1")
            val_xforms.append(mt.ScaleIntensityd(keys="image", minv=0, maxv=1, channel_wise=True))

        val_xforms.append(
            mt.ScaleIntensityRangePercentilesd(
                keys="image", lower=1, upper=99, b_min=0.0, b_max=1.0, channel_wise=True, clip=True
            )
        )
        val_xforms.append(LabelsToFlows(keys="label", flow_key="flow", allow_missing_keys=True))

        return val_xforms

    def get_train_dataset(self):
        train_dataset_data = self.config("train#dataset#data")
        if isinstance(train_dataset_data, list):  # FIXME, why check
            train_files = train_dataset_data
        else:
            train_files, _ = self.train_dataset_data
        logger.info(f"train files {len(train_files)}")
        return Dataset(data=train_files, transform=mt.Compose(self.train_preprocessing))

    def get_val_dataset(self):
        """this is to be used for validation during training"""
        val_dataset_data = self.config("validate#dataset#data")
        if isinstance(val_dataset_data, list):  # FIXME, why check
            valid_files = val_dataset_data
        else:
            _, valid_files = self.train_dataset_data
        return Dataset(data=valid_files, transform=mt.Compose(self.val_preprocessing))

    def set_val_datalist(self, datalist_py):
        self.parser["validate#dataset#data"] = datalist_py
        self._props.pop("val_loader", None)
        self._props.pop("val_dataset", None)
        self._props.pop("val_sampler", None)

    def get_train_sampler(self):
        if self.config("use_weighted_sampler", False):
            data = self.train_dataset.data
            logger.info(f"Using weighted sampler, first item {data[0]}")
            sample_weights = 1.0 / torch.as_tensor(
                [item.get("datalist_count", 1.0) for item in data], dtype=torch.float
            )  # inverse proportional to sub-datalist count
            # if we are using weighed sampling, the number of iterations epoch must be provided
            # (cant use a dataset length anymore)
            num_samples_per_epoch = self.config("num_samples_per_epoch", None)
            if num_samples_per_epoch is None:
                num_samples_per_epoch = len(data)  # a workaround if not provided
                logger.warning(
                    "We are using weighted random sampler, but num_samples_per_epoch is not provided, "
                    f"so using {num_samples_per_epoch} full data length as a workaround!"
                )

            if self.is_distributed:
                return DistributedWeightedSampler(
                    self.train_dataset, shuffle=True, weights=sample_weights, num_samples=num_samples_per_epoch
                )  # custom implementation, as Pytorch does not have one
            return WeightedRandomSampler(weights=sample_weights, num_samples=num_samples_per_epoch)

        if self.is_distributed:
            return DistributedSampler(self.train_dataset, shuffle=True)
        return None

    def get_val_sampler(self):
        if self.is_distributed:
            return DistributedSampler(self.val_dataset, shuffle=False)
        return None

    def get_train_loader(self):
        sampler = self.train_sampler
        return DataLoader(
            self.train_dataset,
            batch_size=self.config("train#batch_size"),
            shuffle=(sampler is None),
            sampler=sampler,
            pin_memory=True,
            num_workers=self.config("train#num_workers"),
        )

    def get_val_loader(self):
        sampler = self.val_sampler
        return DataLoader(
            self.val_dataset,
            batch_size=self.config("validate#batch_size"),
            shuffle=False,
            sampler=sampler,
            pin_memory=True,
            num_workers=self.config("validate#num_workers"),
        )

    def train(self):
        config = self.config
        distributed = self.is_distributed
        sliding_inferrer = config("inferer#sliding_inferer")
        use_amp = config("amp")

        amp_dtype = {"float32": torch.float32, "bfloat16": torch.bfloat16, "float16": torch.float16}[
            config("amp_dtype")
        ]
        if amp_dtype == torch.bfloat16 and not torch.cuda.is_bf16_supported():
            amp_dtype = torch.float16
            logger.warning(
                "bfloat16 dtype is not support on your device, changing to float16, use  --amp_dtype=float16 to set manually"
            )

        use_gradscaler = use_amp and amp_dtype == torch.float16
        logger.info(f"Using grad scaler {use_gradscaler} amp_dtype {amp_dtype} use_amp {use_amp}")
        grad_scaler = GradScaler(enabled=use_gradscaler)  # using GradScaler only for AMP float16 (not bfloat16)

        loss_function = config("loss_function")
        acc_function = config("key_metric")

        ckpt_path = config("ckpt_path")
        channels_last = config("channels_last")

        num_epochs_per_saving = config("train#trainer#num_epochs_per_saving")
        num_epochs_per_validation = config("train#trainer#num_epochs_per_validation")
        num_epochs = config("train#trainer#max_epochs")
        val_schedule_list = self.schedule_validation_epochs(
            num_epochs=num_epochs, num_epochs_per_validation=num_epochs_per_validation
        )
        logger.info(f"Scheduling validation loops at epochs: {val_schedule_list}")

        train_loader = self.train_loader
        val_loader = self.val_loader
        optimizer = config("optimizer")
        model = self.network

        tb_writer = None
        csv_path = progress_path = None

        if self.global_rank == 0 and ckpt_path is not None:
            # rank 0 is responsible for heavy lifting of logging/saving
            progress_path = os.path.join(ckpt_path, "progress.yaml")

            tb_writer = SummaryWriter(log_dir=ckpt_path)
            logger.info(f"Writing Tensorboard logs to {tb_writer.log_dir}")

            if mlflow_is_imported:
                if config("mlflow_tracking_uri", None) is not None:
                    mlflow.set_tracking_uri(config("mlflow_tracking_uri"))
                    mlflow.set_experiment("vista2d")

                    mlflow_run_name = config("mlflow_run_name", f'vista2d train fold{config("fold")}')
                    mlflow.start_run(
                        run_name=mlflow_run_name, log_system_metrics=config("mlflow_log_system_metrics", False)
                    )
                    mlflow.log_params(self.parser.config)
                    mlflow.log_dict(self.parser.config, "hyper_parameters.yaml")  # experimental

            csv_path = os.path.join(ckpt_path, "accuracy_history.csv")
            self.save_history_csv(
                csv_path=csv_path,
                header=["epoch", "metric", "loss", "iter", "time", "train_time", "validation_time", "epoch_time"],
            )

        do_torch_save = (
            (self.global_rank == 0) and ckpt_path and config("ckpt_save") and not config("train#skip", False)
        )
        best_ckpt_path = os.path.join(ckpt_path, "model.pt")
        intermediate_ckpt_path = os.path.join(ckpt_path, "model_final.pt")

        best_metric = float(config("best_metric", -1))
        start_epoch = config("start_epoch", 0)
        best_metric_epoch = -1
        pre_loop_time = time.time()
        report_num_epochs = num_epochs
        train_time = validation_time = 0
        val_acc_history = []

        if start_epoch > 0:
            val_schedule_list = [v for v in val_schedule_list if v >= start_epoch]
            if len(val_schedule_list) == 0:
                val_schedule_list = [start_epoch]
            print(f"adjusted schedule_list {val_schedule_list}")

        logger.info(
            f"Using num_epochs => {num_epochs}\n "
            f"Using start_epoch => {start_epoch}\n "
            f"batch_size => {config('train#batch_size')} \n "
            f"num_warmup_epochs => {config('train#trainer#num_warmup_epochs')} \n "
        )

        lr_scheduler = config("lr_scheduler")
        if lr_scheduler is not None and start_epoch > 0:
            lr_scheduler.last_epoch = start_epoch

        range_num_epochs = range(start_epoch, num_epochs)

        if distributed:
            dist.barrier()

        if self.global_rank == 0 and tb_writer is not None and mlflow_is_imported and mlflow.is_tracking_uri_set():
            mlflow.log_param("len_train_set", len(train_loader.dataset))
            mlflow.log_param("len_val_set", len(val_loader.dataset))

        for epoch in range_num_epochs:
            report_epoch = epoch

            if distributed:
                if isinstance(train_loader.sampler, DistributedSampler):
                    train_loader.sampler.set_epoch(epoch)
                dist.barrier()

            epoch_time = start_time = time.time()

            train_loss, train_acc = 0, 0

            if not config("train#skip", False):
                train_loss, train_acc = self.train_epoch(
                    model=model,
                    train_loader=train_loader,
                    optimizer=optimizer,
                    loss_function=loss_function,
                    acc_function=acc_function,
                    grad_scaler=grad_scaler,
                    epoch=report_epoch,
                    rank=self.rank,
                    global_rank=self.global_rank,
                    num_epochs=report_num_epochs,
                    use_amp=use_amp,
                    amp_dtype=amp_dtype,
                    channels_last=channels_last,
                    device=config("device"),
                )

            train_time = time.time() - start_time
            logger.info(
                f"Latest training  {report_epoch}/{report_num_epochs - 1} "
                f"loss: {train_loss:.4f} time {train_time:.2f}s  "
                f"lr: {optimizer.param_groups[0]['lr']:.4e}"
            )

            if self.global_rank == 0 and tb_writer is not None:
                tb_writer.add_scalar("train/loss", train_loss, report_epoch)

                if mlflow_is_imported and mlflow.is_tracking_uri_set():
                    mlflow.log_metric("train/loss", train_loss, step=report_epoch)
                    mlflow.log_metric("train/epoch_time", train_time, step=report_epoch)

            # validate every num_epochs_per_validation epochs (defaults to 1, every epoch)
            val_acc_mean = -1
            if (
                len(val_schedule_list) > 0
                and epoch + 1 >= val_schedule_list[0]
                and val_loader is not None
                and len(val_loader) > 0
            ):
                val_schedule_list.pop(0)

                start_time = time.time()
                torch.cuda.empty_cache()

                val_loss, val_acc = self.val_epoch(
                    model=model,
                    val_loader=val_loader,
                    sliding_inferrer=sliding_inferrer,
                    loss_function=loss_function,
                    acc_function=acc_function,
                    epoch=report_epoch,
                    rank=self.rank,
                    global_rank=self.global_rank,
                    num_epochs=report_num_epochs,
                    use_amp=use_amp,
                    amp_dtype=amp_dtype,
                    channels_last=channels_last,
                    device=config("device"),
                )

                torch.cuda.empty_cache()
                validation_time = time.time() - start_time

                val_acc_mean = float(np.mean(val_acc))
                val_acc_history.append((report_epoch, val_acc_mean))

                if self.global_rank == 0:
                    logger.info(
                        f"Latest validation {report_epoch}/{report_num_epochs - 1} "
                        f"loss: {val_loss:.4f} acc_avg: {val_acc_mean:.4f} acc: {val_acc} time: {validation_time:.2f}s"
                    )

                    if tb_writer is not None:
                        tb_writer.add_scalar("val/acc", val_acc_mean, report_epoch)
                        tb_writer.add_scalar("val/loss", val_loss, report_epoch)
                        if mlflow_is_imported and mlflow.is_tracking_uri_set():
                            mlflow.log_metric("val/acc", val_acc_mean, step=report_epoch)
                            mlflow.log_metric("val/epoch_time", validation_time, step=report_epoch)

                    timing_dict = {
                        "time": f"{(time.time() - pre_loop_time) / 3600:.2f} hr",
                        "train_time": f"{train_time:.2f}s",
                        "validation_time": f"{validation_time:.2f}s",
                        "epoch_time": f"{time.time() - epoch_time:.2f}s",
                    }

                    if val_acc_mean > best_metric:
                        logger.info(f"New best metric ({best_metric:.6f} --> {val_acc_mean:.6f}). ")
                        best_metric, best_metric_epoch = val_acc_mean, report_epoch
                        save_time = 0
                        if do_torch_save:
                            save_time = self.checkpoint_save(
                                ckpt=best_ckpt_path, model=model, epoch=best_metric_epoch, best_metric=best_metric
                            )

                        if progress_path is not None:
                            self.save_progress_yaml(
                                progress_path=progress_path,
                                ckpt=best_ckpt_path if do_torch_save else None,
                                best_avg_score_epoch=best_metric_epoch,
                                best_avg_score=best_metric,
                                save_time=save_time,
                                **timing_dict,
                            )
                    if csv_path is not None:
                        self.save_history_csv(
                            csv_path=csv_path,
                            epoch=report_epoch,
                            metric=f"{val_acc_mean:.4f}",
                            loss=f"{train_loss:.4f}",
                            iter=report_epoch * len(train_loader.dataset),
                            **timing_dict,
                        )

                # sanity check
                if epoch > max(20, num_epochs / 4) and 0 <= val_acc_mean < 0.01 and config("stop_on_lowacc", True):
                    logger.info(
                        f"Accuracy seems very low at epoch {report_epoch}, acc {val_acc_mean}. "
                        "Most likely optimization diverged, try setting a smaller learning_rate"
                        f" than {config('learning_rate')}"
                    )
                    raise ValueError(
                        f"Accuracy seems very low at epoch {report_epoch}, acc {val_acc_mean}. "
                        "Most likely optimization diverged, try setting a smaller learning_rate"
                        f" than {config('learning_rate')}"
                    )

            # save intermediate checkpoint every num_epochs_per_saving epochs
            if do_torch_save and ((epoch + 1) % num_epochs_per_saving == 0 or (epoch + 1) >= num_epochs):
                if report_epoch != best_metric_epoch:
                    self.checkpoint_save(
                        ckpt=intermediate_ckpt_path, model=model, epoch=report_epoch, best_metric=val_acc_mean
                    )
                else:
                    try:
                        shutil.copyfile(best_ckpt_path, intermediate_ckpt_path)  # if already saved once
                    except Exception as err:
                        logger.warning(f"error copying {best_ckpt_path} {intermediate_ckpt_path} {err}")
                        pass

            if lr_scheduler is not None:
                lr_scheduler.step()

            if self.global_rank == 0:
                # report time estimate
                time_remaining_estimate = train_time * (num_epochs - epoch)
                if val_loader is not None and len(val_loader) > 0:
                    if validation_time == 0:
                        validation_time = train_time
                    time_remaining_estimate += validation_time * len(val_schedule_list)

                logger.info(
                    f"Estimated remaining training time for the current model fold {config('fold')} is "
                    f"{time_remaining_estimate/3600:.2f} hr, "
                    f"running time {(time.time() - pre_loop_time)/3600:.2f} hr, "
                    f"est total time {(time.time() - pre_loop_time + time_remaining_estimate)/3600:.2f} hr \n"
                )

        # end of main epoch loop
        train_loader = val_loader = optimizer = None

        # optionally validate best checkpoint
        logger.info(f"Checking to run final testing {config('run_final_testing')}")
        if config("run_final_testing"):
            if distributed:
                dist.barrier()
            _ckpt_name = best_ckpt_path if os.path.exists(best_ckpt_path) else intermediate_ckpt_path
            if not os.path.exists(_ckpt_name):
                logger.info(f"Unable to validate final no checkpoints found {best_ckpt_path}, {intermediate_ckpt_path}")
            else:
                # self._props.pop("network", None)
                # self._set_props.pop("network", None)
                gc.collect()
                torch.cuda.empty_cache()
                best_metric = self.run_final_testing(
                    pretrained_ckpt_path=_ckpt_name,
                    progress_path=progress_path,
                    best_metric_epoch=best_metric_epoch,
                    pre_loop_time=pre_loop_time,
                )

                if (
                    self.global_rank == 0
                    and tb_writer is not None
                    and mlflow_is_imported
                    and mlflow.is_tracking_uri_set()
                ):
                    mlflow.log_param("acc_testing", val_acc_mean)
                    mlflow.log_metric("acc_testing", val_acc_mean)

        if tb_writer is not None:
            tb_writer.flush()
            tb_writer.close()

            if mlflow_is_imported and mlflow.is_tracking_uri_set():
                mlflow.end_run()

        logger.info(
            f"=== DONE: best_metric: {best_metric:.4f} at epoch: {best_metric_epoch} of {report_num_epochs}."
            f"Training time {(time.time() - pre_loop_time)/3600:.2f} hr."
        )
        return best_metric

    def run_final_testing(self, pretrained_ckpt_path, progress_path, best_metric_epoch, pre_loop_time):
        logger.info("Running final best model testing set!")

        # validate
        start_time = time.time()

        self._props.pop("network", None)
        self.parser["pretrained_ckpt_path"] = pretrained_ckpt_path
        self.parser["validate#evaluator#postprocessing"] = None  # not saving images

        val_acc_mean, val_loss, val_acc = self.validate(val_key="testing")
        validation_time = f"{time.time() - start_time:.2f}s"
        val_acc_mean = float(np.mean(val_acc))
        logger.info(f"Testing: loss: {val_loss:.4f} acc_avg: {val_acc_mean:.4f} acc {val_acc} time {validation_time}")

        if self.global_rank == 0 and progress_path is not None:
            self.save_progress_yaml(
                progress_path=progress_path,
                ckpt=pretrained_ckpt_path,
                best_avg_score_epoch=best_metric_epoch,
                best_avg_score=val_acc_mean,
                validation_time=validation_time,
                run_final_testing=True,
                time=f"{(time.time() - pre_loop_time) / 3600:.2f} hr",
            )
        return val_acc_mean

    def validate(self, validation_files=None, val_key=None, datalist=None):
        if self.config("pretrained_ckpt_name", None) is None and self.config("pretrained_ckpt_path", None) is None:
            self.parser["pretrained_ckpt_name"] = "model.pt"
            logger.info("Using default model.pt checkpoint for validation.")

        grouping = self.config("validate#grouping", False)  # whether to computer average per datalist
        if validation_files is None:
            validation_files = self.read_val_datalists("validate", datalist, val_key=val_key, merge=not grouping)
        if len(validation_files) == 0:
            logger.warning(f"No validation files found {datalist} {val_key}!")
            return 0, 0, 0
        if not grouping or not isinstance(validation_files[0], (list, tuple)):
            validation_files = [validation_files]
        logger.info(f"validation file groups {len(validation_files)} grouping {grouping}")
        val_acc_dict = {}

        amp_dtype = {"float32": torch.float32, "bfloat16": torch.bfloat16, "float16": torch.float16}[
            self.config("amp_dtype")
        ]
        if amp_dtype == torch.bfloat16 and not torch.cuda.is_bf16_supported():
            amp_dtype = torch.float16
            logger.warning(
                "bfloat16 dtype is not support on your device, changing to float16, use  --amp_dtype=float16 to set manually"
            )

        for datalist_id, group_files in enumerate(validation_files):
            self.set_val_datalist(group_files)
            val_loader = self.val_loader

            start_time = time.time()
            val_loss, val_acc = self.val_epoch(
                model=self.network,
                val_loader=val_loader,
                sliding_inferrer=self.config("inferer#sliding_inferer"),
                loss_function=self.config("loss_function"),
                acc_function=self.config("key_metric"),
                rank=self.rank,
                global_rank=self.global_rank,
                use_amp=self.config("amp"),
                amp_dtype=amp_dtype,
                post_transforms=self.config("validate#evaluator#postprocessing"),
                channels_last=self.config("channels_last"),
                device=self.config("device"),
            )
            val_acc_mean = float(np.mean(val_acc))
            logger.info(
                f"Validation {datalist_id} complete, loss_avg: {val_loss:.4f} "
                f"acc_avg: {val_acc_mean:.4f} acc {val_acc} time {time.time() - start_time:.2f}s"
            )
            val_acc_dict[datalist_id] = val_acc_mean
        for k, v in val_acc_dict.items():
            logger.info(f"group: {k} => {v:.4f}")
        val_acc_mean = sum(val_acc_dict.values()) / len(val_acc_dict.values())
        logger.info(f"Testing group score average: {val_acc_mean:.4f}")
        return val_acc_mean, val_loss, val_acc

    def infer(self, infer_files=None, infer_key=None, datalist=None):
        if self.config("pretrained_ckpt_name", None) is None and self.config("pretrained_ckpt_path", None) is None:
            self.parser["pretrained_ckpt_name"] = "model.pt"
            logger.info("Using default model.pt checkpoint for inference.")

        if infer_files is None:
            infer_files = self.read_val_datalists("infer", datalist, val_key=infer_key, merge=True)
        if len(infer_files) == 0:
            logger.warning(f"no file to infer {datalist} {infer_key}.")
            return
        logger.info(f"inference files {len(infer_files)}")
        self.set_val_datalist(infer_files)
        val_loader = self.val_loader

        amp_dtype = {"float32": torch.float32, "bfloat16": torch.bfloat16, "float16": torch.float16}[
            self.config("amp_dtype")
        ]
        if amp_dtype == torch.bfloat16 and not torch.cuda.is_bf16_supported():
            amp_dtype = torch.bfloat16
            logger.warning(
                "bfloat16 dtype is not support on your device, changing to float16, use  --amp_dtype=float16 to set manually"
            )

        start_time = time.time()
        self.val_epoch(
            model=self.network,
            val_loader=val_loader,
            sliding_inferrer=self.config("inferer#sliding_inferer"),
            loss_function=None,
            acc_function=None,
            rank=self.rank,
            global_rank=self.global_rank,
            use_amp=self.config("amp"),
            amp_dtype=amp_dtype,
            post_transforms=self.config("infer#evaluator#postprocessing"),
            channels_last=self.config("channels_last"),
            device=self.config("device"),
        )
        logger.info(f"Inference complete time {time.time() - start_time:.2f}s")
        return

    @torch.no_grad()
    def val_epoch(
        self,
        model,
        val_loader,
        sliding_inferrer,
        loss_function=None,
        acc_function=None,
        epoch=0,
        rank=0,
        global_rank=0,
        num_epochs=0,
        use_amp=True,
        amp_dtype=torch.float16,
        post_transforms=None,
        channels_last=False,
        device=None,
    ):
        model.eval()
        distributed = dist.is_available() and dist.is_initialized()
        memory_format = torch.channels_last if channels_last else torch.preserve_format

        run_loss = CumulativeAverage()
        run_acc = CumulativeAverage()
        run_loss.append(torch.tensor(0, device=device), count=0)

        avg_loss = avg_acc = 0
        start_time = time.time()

        # In DDP, each replica has a subset of data, but if total data length is not evenly divisible by num_replicas,
        # then some replicas has 1 extra repeated item.
        # For proper validation with batch of 1, we only want to collect metrics for non-repeated items,
        # hence let's compute a proper subset length
        nonrepeated_data_length = len(val_loader.dataset)
        sampler = val_loader.sampler
        if distributed and isinstance(sampler, DistributedSampler) and not sampler.drop_last:
            nonrepeated_data_length = len(range(sampler.rank, len(sampler.dataset), sampler.num_replicas))

        for idx, batch_data in enumerate(val_loader):
            data = batch_data["image"].as_subclass(torch.Tensor).to(memory_format=memory_format, device=device)
            filename = batch_data["image"].meta[ImageMetaKey.FILENAME_OR_OBJ]
            batch_size = data.shape[0]
            loss = acc = None

            with autocast(enabled=use_amp, dtype=amp_dtype):
                logits = sliding_inferrer(inputs=data, network=model)
            data = None

            # calc loss
            if loss_function is not None:
                target = batch_data["flow"].as_subclass(torch.Tensor).to(device=logits.device)
                loss = loss_function(logits, target)
                run_loss.append(loss.to(device=device), count=batch_size)
                target = None

            pred_mask_all = []

            for b_ind in range(logits.shape[0]):  # go over batch dim
                pred_mask, p = LogitsToLabels()(logits=logits[b_ind], filename=filename)
                pred_mask_all.append(pred_mask)

            if acc_function is not None:
                label = batch_data["label"].as_subclass(torch.Tensor)

                for b_ind in range(label.shape[0]):
                    acc = acc_function(pred_mask_all[b_ind], label[b_ind, 0].long())
                    acc = acc.detach().clone() if isinstance(acc, torch.Tensor) else torch.tensor(acc)

                    if idx < nonrepeated_data_length:
                        run_acc.append(acc.to(device=device), count=1)
                    else:
                        run_acc.append(torch.zeros_like(acc, device=device), count=0)
                label = None

            avg_loss = loss.cpu() if loss is not None else 0
            avg_acc = acc.cpu().numpy() if acc is not None else 0

            logger.info(
                f"Val {epoch}/{num_epochs} {idx}/{len(val_loader)} "
                f"loss: {avg_loss:.4f} acc {avg_acc}  time {time.time() - start_time:.2f}s"
            )

            if post_transforms:
                seg = torch.from_numpy(np.stack(pred_mask_all, axis=0).astype(np.int32)).unsqueeze(1)
                batch_data["seg"] = convert_to_dst_type(
                    seg, batch_data["image"], dtype=torch.int32, device=torch.device("cpu")
                )[0]
                for bd in decollate_batch(batch_data):
                    post_transforms(bd)  # (currently only to save output mask)

            start_time = time.time()

        label = target = data = batch_data = None

        if distributed:
            dist.barrier()

        avg_loss = run_loss.aggregate()
        avg_acc = run_acc.aggregate()

        if np.any(avg_acc < 0):
            dist.barrier()
            logger.warning(f"Avg accuracy is negative ({avg_acc}), something went wrong!!!!!")

        return avg_loss, avg_acc

    def train_epoch(
        self,
        model,
        train_loader,
        optimizer,
        loss_function,
        acc_function,
        grad_scaler,
        epoch,
        rank,
        global_rank=0,
        num_epochs=0,
        use_amp=True,
        amp_dtype=torch.float16,
        channels_last=False,
        device=None,
    ):
        model.train()
        memory_format = torch.channels_last if channels_last else torch.preserve_format

        run_loss = CumulativeAverage()

        start_time = time.time()
        avg_loss = avg_acc = 0
        for idx, batch_data in enumerate(train_loader):
            data = batch_data["image"].as_subclass(torch.Tensor).to(memory_format=memory_format, device=device)
            target = batch_data["flow"].as_subclass(torch.Tensor).to(memory_format=memory_format, device=device)

            optimizer.zero_grad(set_to_none=True)

            with autocast(enabled=use_amp, dtype=amp_dtype):
                logits = model(data)

            # print('logits', logits.shape, logits.dtype)
            loss = loss_function(logits.float(), target)

            grad_scaler.scale(loss).backward()
            grad_scaler.step(optimizer)
            grad_scaler.update()

            batch_size = data.shape[0]

            run_loss.append(loss, count=batch_size)
            avg_loss = run_loss.aggregate()

            logger.info(
                f"Epoch {epoch}/{num_epochs} {idx}/{len(train_loader)} "
                f"loss: {avg_loss:.4f} time {time.time() - start_time:.2f}s "
            )
            start_time = time.time()

        optimizer.zero_grad(set_to_none=True)

        data = None
        target = None
        batch_data = None

        return avg_loss, avg_acc

    def save_history_csv(self, csv_path=None, header=None, **kwargs):
        if csv_path is not None:
            if header is not None:
                with open(csv_path, "a") as myfile:
                    wrtr = csv.writer(myfile, delimiter="\t")
                    wrtr.writerow(header)
            if len(kwargs):
                with open(csv_path, "a") as myfile:
                    wrtr = csv.writer(myfile, delimiter="\t")
                    wrtr.writerow(list(kwargs.values()))

    def save_progress_yaml(self, progress_path=None, ckpt=None, **report):
        if ckpt is not None:
            report["model"] = ckpt

        report["date"] = str(datetime.now())[:19]

        if progress_path is not None:
            yaml.add_representer(
                float, lambda dumper, value: dumper.represent_scalar("tag:yaml.org,2002:float", f"{value:.4f}")
            )
            with open(progress_path, "a") as progress_file:
                yaml.dump([report], stream=progress_file, allow_unicode=True, default_flow_style=None, sort_keys=False)

        logger.info("Progress:" + ",".join(f" {k}: {v}" for k, v in report.items()))

    def checkpoint_save(self, ckpt: str, model: torch.nn.Module, **kwargs):
        # save checkpoint and config
        save_time = time.time()
        if isinstance(model, torch.nn.parallel.DistributedDataParallel):
            state_dict = model.module.state_dict()
        else:
            state_dict = model.state_dict()

        if self.config("compile", False):
            # remove key prefix of compiled models
            state_dict = OrderedDict(
                (k[len("_orig_mod.") :] if k.startswith("_orig_mod.") else k, v) for k, v in state_dict.items()
            )

        torch.save({"state_dict": state_dict, "config": self.parser.config, **kwargs}, ckpt)

        save_time = time.time() - save_time
        logger.info(f"Saving checkpoint process: {ckpt}, {kwargs}, save_time {save_time:.2f}s")

        return save_time

    def checkpoint_load(self, ckpt: str, model: torch.nn.Module, **kwargs):
        # load checkpoint
        if not os.path.isfile(ckpt):
            logger.warning("Invalid checkpoint file: " + str(ckpt))
            return
        checkpoint = torch.load(ckpt, map_location="cpu")

        model.load_state_dict(checkpoint["state_dict"], strict=True)
        epoch = checkpoint.get("epoch", 0)
        best_metric = checkpoint.get("best_metric", 0)

        if self.config("continue", False):
            if "epoch" in checkpoint:
                self.parser["start_epoch"] = checkpoint["epoch"]
            if "best_metric" in checkpoint:
                self.parser["best_metric"] = checkpoint["best_metric"]

        logger.info(
            f"=> loaded checkpoint {ckpt} (epoch {epoch}) "
            f"(best_metric {best_metric}) setting start_epoch {self.config('start_epoch')}"
        )
        self.parser["start_epoch"] = int(self.config("start_epoch")) + 1
        return

    def schedule_validation_epochs(self, num_epochs, num_epochs_per_validation=None, fraction=0.16) -> list:
        """
        Schedule of epochs to validate (progressively more frequently)
            num_epochs - total number of epochs
            num_epochs_per_validation - if provided use a linear schedule with this step
            init_step
        """

        if num_epochs_per_validation is None:
            x = (np.sin(np.linspace(0, np.pi / 2, max(10, int(fraction * num_epochs)))) * num_epochs).astype(int)
            x = np.cumsum(np.sort(np.diff(np.unique(x)))[::-1])
            x[-1] = num_epochs
            x = x.tolist()
        else:
            if num_epochs_per_validation >= num_epochs:
                x = [num_epochs_per_validation]
            else:
                x = list(range(num_epochs_per_validation, num_epochs, num_epochs_per_validation))

        if len(x) == 0:
            x = [0]

        return x


def main(**kwargs) -> None:
    workflow = VistaCell(**kwargs)
    workflow.initialize()
    workflow.run()
    workflow.finalize()


if __name__ == "__main__":
    # to be able to run directly as python scripts/workflow.py --config_file=...
    # for debugging and development

    from pathlib import Path

    sys.path.append(str(Path(__file__).parent.parent))

    # from scripts import *

    fire, fire_is_imported = optional_import("fire")
    if fire_is_imported:
        fire.Fire(main)
    else:
        print("Missing package: fire")