File size: 50,745 Bytes
fd4ffa6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 |
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import gc
import logging
import os
import shutil
import sys
import time
from collections import OrderedDict
from datetime import datetime
import monai.transforms as mt
import numpy as np
import torch
import torch.distributed as dist
import yaml
from monai.apps import get_logger
from monai.auto3dseg.utils import datafold_read
from monai.bundle import BundleWorkflow, ConfigParser
from monai.config import print_config
from monai.data import DataLoader, Dataset, decollate_batch
from monai.metrics import CumulativeAverage
from monai.utils import (
BundleProperty,
ImageMetaKey,
convert_to_dst_type,
ensure_tuple,
look_up_option,
optional_import,
set_determinism,
)
from torch.cuda.amp import GradScaler, autocast
from torch.utils.data import WeightedRandomSampler
from torch.utils.data.distributed import DistributedSampler
from torch.utils.tensorboard import SummaryWriter
mlflow, mlflow_is_imported = optional_import("mlflow")
if __package__ in (None, ""):
from cell_distributed_weighted_sampler import DistributedWeightedSampler
from components import LabelsToFlows, LoadTiffd, LogitsToLabels
from utils import LOGGING_CONFIG, parsing_bundle_config # type: ignore
else:
from .cell_distributed_weighted_sampler import DistributedWeightedSampler
from .components import LabelsToFlows, LoadTiffd, LogitsToLabels
from .utils import LOGGING_CONFIG, parsing_bundle_config
logger = get_logger("VistaCell")
class VistaCell(BundleWorkflow):
"""
Primary vista model training workflow that extends
monai.bundle.BundleWorkflow for cell segmentation.
"""
def __init__(self, config_file=None, meta_file=None, logging_file=None, workflow_type="train", **override):
"""
config_file can be one or a list of config files.
the rest key-values in the `override` are to override config content.
"""
parser = parsing_bundle_config(config_file, logging_file=logging_file, meta_file=meta_file)
parser.update(pairs=override)
mode = parser.get("mode", None)
if mode is not None: # if user specified a `mode` it'll override the workflow_type arg
workflow_type = mode
else:
mode = workflow_type # if user didn't specify mode, the workflow_type will be used
super().__init__(workflow_type=workflow_type)
self._props = {}
self._set_props = {}
self.parser = parser
self.rank = int(os.getenv("LOCAL_RANK", "0"))
self.global_rank = int(os.getenv("RANK", "0"))
self.is_distributed = dist.is_available() and dist.is_initialized()
# check if torchrun or bcprun started it
if dist.is_torchelastic_launched() or (
os.getenv("NGC_ARRAY_SIZE") is not None and int(os.getenv("NGC_ARRAY_SIZE")) > 1
):
if dist.is_available():
dist.init_process_group(backend="nccl", init_method="env://")
self.is_distributed = dist.is_available() and dist.is_initialized()
torch.cuda.set_device(self.config("device"))
dist.barrier()
else:
self.is_distributed = False
if self.global_rank == 0 and self.config("ckpt_path") and not os.path.exists(self.config("ckpt_path")):
os.makedirs(self.config("ckpt_path"), exist_ok=True)
if self.rank == 0:
# make sure the log file exists, as a workaround for mult-gpu logging race condition
_log_file = self.config("log_output_file", "vista_cell.log")
_log_file_dir = os.path.dirname(_log_file)
if _log_file_dir and not os.path.exists(_log_file_dir):
os.makedirs(_log_file_dir, exist_ok=True)
print_config()
if self.is_distributed:
dist.barrier()
seed = self.config("seed", None)
if seed is not None:
set_determinism(seed)
logger.info(f"set determinism seed: {self.config('seed', None)}")
elif torch.cuda.is_available():
torch.backends.cudnn.benchmark = True
logger.info("No seed provided, using cudnn.benchmark for performance.")
if os.path.exists(self.config("ckpt_path")):
self.parser.export_config_file(
self.parser.config,
os.path.join(self.config("ckpt_path"), "working.yaml"),
fmt="yaml",
default_flow_style=None,
)
self.add_property("network", required=True)
self.add_property("train_loader", required=True)
self.add_property("val_dataset", required=False)
self.add_property("val_loader", required=False)
self.add_property("val_preprocessing", required=False)
self.add_property("train_sampler", required=True)
self.add_property("val_sampler", required=True)
self.add_property("mode", required=False)
# set evaluator as required when mode is infer or eval
# will change after we enhance the bundle properties
self.evaluator = None
def _set_property(self, name, property, value):
# stores user-reset initialized objects that should not be re-initialized.
self._set_props[name] = value
def _get_property(self, name, property):
"""
The customized bundle workflow must implement required properties in:
https://github.com/Project-MONAI/MONAI/blob/dev/monai/bundle/properties.py.
"""
if name in self._set_props:
self._props[name] = self._set_props[name]
return self._props[name]
if name in self._props:
return self._props[name]
try:
value = getattr(self, f"get_{name}")()
except AttributeError as err:
if property[BundleProperty.REQUIRED]:
raise ValueError(
f"Property '{name}' is required by the bundle format, "
f"but the method 'get_{name}' is not implemented."
) from err
raise AttributeError from err
self._props[name] = value
return value
def config(self, name, default="null", **kwargs):
"""read the parsed content (evaluate the expression) from the config file."""
if default != "null":
return self.parser.get_parsed_content(name, default=default, **kwargs)
return self.parser.get_parsed_content(name, **kwargs)
def initialize(self):
_log_file = self.config("log_output_file", "vista_cell.log")
if _log_file is None:
LOGGING_CONFIG["loggers"]["VistaCell"]["handlers"].remove("file")
LOGGING_CONFIG["handlers"].pop("file", None)
else:
LOGGING_CONFIG["handlers"]["file"]["filename"] = _log_file
logging.config.dictConfig(LOGGING_CONFIG)
def get_mode(self):
mode_str = self.config("mode", self.workflow_type)
return look_up_option(mode_str, ("train", "training", "infer", "inference", "eval", "evaluation"))
def run(self):
if str(self.mode).startswith("train"):
return self.train()
if str(self.mode).startswith("infer"):
return self.infer()
return self.validate()
def finalize(self):
if self.is_distributed:
dist.destroy_process_group()
set_determinism(None)
def get_network_def(self):
return self.config("network_def")
def get_network(self):
pretrained_ckpt_name = self.config("pretrained_ckpt_name", None)
pretrained_ckpt_path = self.config("pretrained_ckpt_path", None)
if pretrained_ckpt_name is not None and pretrained_ckpt_path is None:
# if relative name specified, append to default ckpt_path dir
pretrained_ckpt_path = os.path.join(self.config("ckpt_path"), pretrained_ckpt_name)
if pretrained_ckpt_path is not None and not os.path.exists(pretrained_ckpt_path):
logger.info(f"Pretrained checkpoint {pretrained_ckpt_path} not found.")
raise ValueError(f"Pretrained checkpoint {pretrained_ckpt_path} not found.")
if pretrained_ckpt_path is not None and os.path.exists(pretrained_ckpt_path):
# not loading sam weights, if we're using our own checkpoint
if "checkpoint" in self.parser.config["network_def"]:
self.parser.config["network_def"]["checkpoint"] = None
model = self.config("network")
self.checkpoint_load(ckpt=pretrained_ckpt_path, model=model)
else:
model = self.config("network")
if self.config("channels_last", False):
model = model.to(memory_format=torch.channels_last)
if self.is_distributed:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
if self.config("compile", False):
model = torch.compile(model)
if self.is_distributed:
model = torch.nn.parallel.DistributedDataParallel(
module=model,
device_ids=[self.rank],
output_device=self.rank,
find_unused_parameters=self.config("find_unused_parameters", False),
)
pytorch_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
logger.info(f"total parameters count {pytorch_params} distributed {self.is_distributed}")
return model
def get_train_dataset_data(self):
train_files, valid_files = [], []
dataset_data = self.config("train#dataset#data")
val_key = None
if isinstance(dataset_data, dict):
val_key = dataset_data.get("key", None)
data_list_files = dataset_data["data_list_files"]
if isinstance(data_list_files, str):
data_list_files = ConfigParser.load_config_file(
data_list_files
) # if it's a path to a separate file with a list of datasets
else:
data_list_files = ensure_tuple(data_list_files)
if self.global_rank == 0:
print("Using data_list_files ", data_list_files)
for idx, d in enumerate(data_list_files):
logger.info(f"adding datalist ({idx}): {d['datalist']}")
t, v = datafold_read(datalist=d["datalist"], basedir=d["basedir"], fold=self.config("fold"))
if val_key is not None:
v, _ = datafold_read(datalist=d["datalist"], basedir=d["basedir"], fold=-1, key=val_key) # e.g. testing
for item in t:
item["datalist_id"] = idx
item["datalist_count"] = len(t)
for item in v:
item["datalist_id"] = idx
item["datalist_count"] = len(v)
train_files.extend(t)
valid_files.extend(v)
if self.config("quick", False):
logger.info("quick_data")
train_files = train_files[:8]
valid_files = valid_files[:7]
if not valid_files:
logger.warning("No validation data found.")
return train_files, valid_files
def read_val_datalists(self, section="validate", data_list_files=None, val_key=None, merge=True):
"""read the corresponding folds of the datalist for validation or inference"""
dataset_data = self.config(f"{section}#dataset#data")
if isinstance(dataset_data, list):
return dataset_data
if data_list_files is None:
data_list_files = dataset_data["data_list_files"]
if isinstance(data_list_files, str):
data_list_files = ConfigParser.load_config_file(
data_list_files
) # if it's a path to a separate file with a list of datasets
else:
data_list_files = ensure_tuple(data_list_files)
if val_key is None:
val_key = dataset_data.get("key", None)
val_files, idx = [], 0
for d in data_list_files:
if val_key is not None:
v_files, _ = datafold_read(datalist=d["datalist"], basedir=d["basedir"], fold=-1, key=val_key)
else:
_, v_files = datafold_read(datalist=d["datalist"], basedir=d["basedir"], fold=self.config("fold"))
logger.info(f"adding datalist ({idx} -- {val_key}): {d['datalist']} {len(v_files)}")
if merge:
val_files.extend(v_files)
else:
val_files.append(v_files)
idx += 1
if self.config("quick", False):
logger.info("quick_data")
val_files = val_files[:8] if merge else [val_files[0][:8]]
return val_files
def get_train_preprocessing(self):
roi_size = self.config("train#dataset#preprocessing#roi_size")
train_xforms = []
train_xforms.append(LoadTiffd(keys=["image", "label"]))
train_xforms.append(mt.EnsureTyped(keys=["image", "label"], data_type="tensor", dtype=torch.float))
if self.config("prescale", True):
print("Prescaling images to 0..1")
train_xforms.append(mt.ScaleIntensityd(keys="image", minv=0, maxv=1, channel_wise=True))
train_xforms.append(mt.ScaleIntensityd(keys="image", minv=0, maxv=1, channel_wise=True))
train_xforms.append(
mt.ScaleIntensityRangePercentilesd(
keys="image", lower=1, upper=99, b_min=0.0, b_max=1.0, channel_wise=True, clip=True
)
)
train_xforms.append(mt.SpatialPadd(keys=["image", "label"], spatial_size=roi_size))
train_xforms.append(
mt.RandSpatialCropd(keys=["image", "label"], roi_size=roi_size)
) # crop roi_size (if image is large)
# # add augmentations
train_xforms.extend(
[
mt.RandAffined(
keys=["image", "label"],
prob=0.5,
rotate_range=np.pi, # from -pi to pi
scale_range=[-0.5, 0.5], # from 0.5 to 1.5
mode=["bilinear", "nearest"],
spatial_size=roi_size,
cache_grid=True,
padding_mode="border",
),
mt.RandAxisFlipd(keys=["image", "label"], prob=0.5),
mt.RandGaussianNoised(keys=["image"], prob=0.25, mean=0, std=0.1),
mt.RandAdjustContrastd(keys=["image"], prob=0.25, gamma=(1, 2)),
mt.RandGaussianSmoothd(keys=["image"], prob=0.25, sigma_x=(1, 2)),
mt.RandHistogramShiftd(keys=["image"], prob=0.25, num_control_points=3),
mt.RandGaussianSharpend(keys=["image"], prob=0.25),
]
)
train_xforms.append(
LabelsToFlows(keys="label", flow_key="flow")
) # finally create new key "flows" with 3 channels 1) foreground 2) dx flow 3) dy flow
return train_xforms
def get_val_preprocessing(self):
val_xforms = []
val_xforms.append(LoadTiffd(keys=["image", "label"], allow_missing_keys=True))
val_xforms.append(
mt.EnsureTyped(keys=["image", "label"], data_type="tensor", dtype=torch.float, allow_missing_keys=True)
)
if self.config("prescale", True):
print("Prescaling val images to 0..1")
val_xforms.append(mt.ScaleIntensityd(keys="image", minv=0, maxv=1, channel_wise=True))
val_xforms.append(
mt.ScaleIntensityRangePercentilesd(
keys="image", lower=1, upper=99, b_min=0.0, b_max=1.0, channel_wise=True, clip=True
)
)
val_xforms.append(LabelsToFlows(keys="label", flow_key="flow", allow_missing_keys=True))
return val_xforms
def get_train_dataset(self):
train_dataset_data = self.config("train#dataset#data")
if isinstance(train_dataset_data, list): # FIXME, why check
train_files = train_dataset_data
else:
train_files, _ = self.train_dataset_data
logger.info(f"train files {len(train_files)}")
return Dataset(data=train_files, transform=mt.Compose(self.train_preprocessing))
def get_val_dataset(self):
"""this is to be used for validation during training"""
val_dataset_data = self.config("validate#dataset#data")
if isinstance(val_dataset_data, list): # FIXME, why check
valid_files = val_dataset_data
else:
_, valid_files = self.train_dataset_data
return Dataset(data=valid_files, transform=mt.Compose(self.val_preprocessing))
def set_val_datalist(self, datalist_py):
self.parser["validate#dataset#data"] = datalist_py
self._props.pop("val_loader", None)
self._props.pop("val_dataset", None)
self._props.pop("val_sampler", None)
def get_train_sampler(self):
if self.config("use_weighted_sampler", False):
data = self.train_dataset.data
logger.info(f"Using weighted sampler, first item {data[0]}")
sample_weights = 1.0 / torch.as_tensor(
[item.get("datalist_count", 1.0) for item in data], dtype=torch.float
) # inverse proportional to sub-datalist count
# if we are using weighed sampling, the number of iterations epoch must be provided
# (cant use a dataset length anymore)
num_samples_per_epoch = self.config("num_samples_per_epoch", None)
if num_samples_per_epoch is None:
num_samples_per_epoch = len(data) # a workaround if not provided
logger.warning(
"We are using weighted random sampler, but num_samples_per_epoch is not provided, "
f"so using {num_samples_per_epoch} full data length as a workaround!"
)
if self.is_distributed:
return DistributedWeightedSampler(
self.train_dataset, shuffle=True, weights=sample_weights, num_samples=num_samples_per_epoch
) # custom implementation, as Pytorch does not have one
return WeightedRandomSampler(weights=sample_weights, num_samples=num_samples_per_epoch)
if self.is_distributed:
return DistributedSampler(self.train_dataset, shuffle=True)
return None
def get_val_sampler(self):
if self.is_distributed:
return DistributedSampler(self.val_dataset, shuffle=False)
return None
def get_train_loader(self):
sampler = self.train_sampler
return DataLoader(
self.train_dataset,
batch_size=self.config("train#batch_size"),
shuffle=(sampler is None),
sampler=sampler,
pin_memory=True,
num_workers=self.config("train#num_workers"),
)
def get_val_loader(self):
sampler = self.val_sampler
return DataLoader(
self.val_dataset,
batch_size=self.config("validate#batch_size"),
shuffle=False,
sampler=sampler,
pin_memory=True,
num_workers=self.config("validate#num_workers"),
)
def train(self):
config = self.config
distributed = self.is_distributed
sliding_inferrer = config("inferer#sliding_inferer")
use_amp = config("amp")
amp_dtype = {"float32": torch.float32, "bfloat16": torch.bfloat16, "float16": torch.float16}[
config("amp_dtype")
]
if amp_dtype == torch.bfloat16 and not torch.cuda.is_bf16_supported():
amp_dtype = torch.float16
logger.warning(
"bfloat16 dtype is not support on your device, changing to float16, use --amp_dtype=float16 to set manually"
)
use_gradscaler = use_amp and amp_dtype == torch.float16
logger.info(f"Using grad scaler {use_gradscaler} amp_dtype {amp_dtype} use_amp {use_amp}")
grad_scaler = GradScaler(enabled=use_gradscaler) # using GradScaler only for AMP float16 (not bfloat16)
loss_function = config("loss_function")
acc_function = config("key_metric")
ckpt_path = config("ckpt_path")
channels_last = config("channels_last")
num_epochs_per_saving = config("train#trainer#num_epochs_per_saving")
num_epochs_per_validation = config("train#trainer#num_epochs_per_validation")
num_epochs = config("train#trainer#max_epochs")
val_schedule_list = self.schedule_validation_epochs(
num_epochs=num_epochs, num_epochs_per_validation=num_epochs_per_validation
)
logger.info(f"Scheduling validation loops at epochs: {val_schedule_list}")
train_loader = self.train_loader
val_loader = self.val_loader
optimizer = config("optimizer")
model = self.network
tb_writer = None
csv_path = progress_path = None
if self.global_rank == 0 and ckpt_path is not None:
# rank 0 is responsible for heavy lifting of logging/saving
progress_path = os.path.join(ckpt_path, "progress.yaml")
tb_writer = SummaryWriter(log_dir=ckpt_path)
logger.info(f"Writing Tensorboard logs to {tb_writer.log_dir}")
if mlflow_is_imported:
if config("mlflow_tracking_uri", None) is not None:
mlflow.set_tracking_uri(config("mlflow_tracking_uri"))
mlflow.set_experiment("vista2d")
mlflow_run_name = config("mlflow_run_name", f'vista2d train fold{config("fold")}')
mlflow.start_run(
run_name=mlflow_run_name, log_system_metrics=config("mlflow_log_system_metrics", False)
)
mlflow.log_params(self.parser.config)
mlflow.log_dict(self.parser.config, "hyper_parameters.yaml") # experimental
csv_path = os.path.join(ckpt_path, "accuracy_history.csv")
self.save_history_csv(
csv_path=csv_path,
header=["epoch", "metric", "loss", "iter", "time", "train_time", "validation_time", "epoch_time"],
)
do_torch_save = (
(self.global_rank == 0) and ckpt_path and config("ckpt_save") and not config("train#skip", False)
)
best_ckpt_path = os.path.join(ckpt_path, "model.pt")
intermediate_ckpt_path = os.path.join(ckpt_path, "model_final.pt")
best_metric = float(config("best_metric", -1))
start_epoch = config("start_epoch", 0)
best_metric_epoch = -1
pre_loop_time = time.time()
report_num_epochs = num_epochs
train_time = validation_time = 0
val_acc_history = []
if start_epoch > 0:
val_schedule_list = [v for v in val_schedule_list if v >= start_epoch]
if len(val_schedule_list) == 0:
val_schedule_list = [start_epoch]
print(f"adjusted schedule_list {val_schedule_list}")
logger.info(
f"Using num_epochs => {num_epochs}\n "
f"Using start_epoch => {start_epoch}\n "
f"batch_size => {config('train#batch_size')} \n "
f"num_warmup_epochs => {config('train#trainer#num_warmup_epochs')} \n "
)
lr_scheduler = config("lr_scheduler")
if lr_scheduler is not None and start_epoch > 0:
lr_scheduler.last_epoch = start_epoch
range_num_epochs = range(start_epoch, num_epochs)
if distributed:
dist.barrier()
if self.global_rank == 0 and tb_writer is not None and mlflow_is_imported and mlflow.is_tracking_uri_set():
mlflow.log_param("len_train_set", len(train_loader.dataset))
mlflow.log_param("len_val_set", len(val_loader.dataset))
for epoch in range_num_epochs:
report_epoch = epoch
if distributed:
if isinstance(train_loader.sampler, DistributedSampler):
train_loader.sampler.set_epoch(epoch)
dist.barrier()
epoch_time = start_time = time.time()
train_loss, train_acc = 0, 0
if not config("train#skip", False):
train_loss, train_acc = self.train_epoch(
model=model,
train_loader=train_loader,
optimizer=optimizer,
loss_function=loss_function,
acc_function=acc_function,
grad_scaler=grad_scaler,
epoch=report_epoch,
rank=self.rank,
global_rank=self.global_rank,
num_epochs=report_num_epochs,
use_amp=use_amp,
amp_dtype=amp_dtype,
channels_last=channels_last,
device=config("device"),
)
train_time = time.time() - start_time
logger.info(
f"Latest training {report_epoch}/{report_num_epochs - 1} "
f"loss: {train_loss:.4f} time {train_time:.2f}s "
f"lr: {optimizer.param_groups[0]['lr']:.4e}"
)
if self.global_rank == 0 and tb_writer is not None:
tb_writer.add_scalar("train/loss", train_loss, report_epoch)
if mlflow_is_imported and mlflow.is_tracking_uri_set():
mlflow.log_metric("train/loss", train_loss, step=report_epoch)
mlflow.log_metric("train/epoch_time", train_time, step=report_epoch)
# validate every num_epochs_per_validation epochs (defaults to 1, every epoch)
val_acc_mean = -1
if (
len(val_schedule_list) > 0
and epoch + 1 >= val_schedule_list[0]
and val_loader is not None
and len(val_loader) > 0
):
val_schedule_list.pop(0)
start_time = time.time()
torch.cuda.empty_cache()
val_loss, val_acc = self.val_epoch(
model=model,
val_loader=val_loader,
sliding_inferrer=sliding_inferrer,
loss_function=loss_function,
acc_function=acc_function,
epoch=report_epoch,
rank=self.rank,
global_rank=self.global_rank,
num_epochs=report_num_epochs,
use_amp=use_amp,
amp_dtype=amp_dtype,
channels_last=channels_last,
device=config("device"),
)
torch.cuda.empty_cache()
validation_time = time.time() - start_time
val_acc_mean = float(np.mean(val_acc))
val_acc_history.append((report_epoch, val_acc_mean))
if self.global_rank == 0:
logger.info(
f"Latest validation {report_epoch}/{report_num_epochs - 1} "
f"loss: {val_loss:.4f} acc_avg: {val_acc_mean:.4f} acc: {val_acc} time: {validation_time:.2f}s"
)
if tb_writer is not None:
tb_writer.add_scalar("val/acc", val_acc_mean, report_epoch)
tb_writer.add_scalar("val/loss", val_loss, report_epoch)
if mlflow_is_imported and mlflow.is_tracking_uri_set():
mlflow.log_metric("val/acc", val_acc_mean, step=report_epoch)
mlflow.log_metric("val/epoch_time", validation_time, step=report_epoch)
timing_dict = {
"time": f"{(time.time() - pre_loop_time) / 3600:.2f} hr",
"train_time": f"{train_time:.2f}s",
"validation_time": f"{validation_time:.2f}s",
"epoch_time": f"{time.time() - epoch_time:.2f}s",
}
if val_acc_mean > best_metric:
logger.info(f"New best metric ({best_metric:.6f} --> {val_acc_mean:.6f}). ")
best_metric, best_metric_epoch = val_acc_mean, report_epoch
save_time = 0
if do_torch_save:
save_time = self.checkpoint_save(
ckpt=best_ckpt_path, model=model, epoch=best_metric_epoch, best_metric=best_metric
)
if progress_path is not None:
self.save_progress_yaml(
progress_path=progress_path,
ckpt=best_ckpt_path if do_torch_save else None,
best_avg_score_epoch=best_metric_epoch,
best_avg_score=best_metric,
save_time=save_time,
**timing_dict,
)
if csv_path is not None:
self.save_history_csv(
csv_path=csv_path,
epoch=report_epoch,
metric=f"{val_acc_mean:.4f}",
loss=f"{train_loss:.4f}",
iter=report_epoch * len(train_loader.dataset),
**timing_dict,
)
# sanity check
if epoch > max(20, num_epochs / 4) and 0 <= val_acc_mean < 0.01 and config("stop_on_lowacc", True):
logger.info(
f"Accuracy seems very low at epoch {report_epoch}, acc {val_acc_mean}. "
"Most likely optimization diverged, try setting a smaller learning_rate"
f" than {config('learning_rate')}"
)
raise ValueError(
f"Accuracy seems very low at epoch {report_epoch}, acc {val_acc_mean}. "
"Most likely optimization diverged, try setting a smaller learning_rate"
f" than {config('learning_rate')}"
)
# save intermediate checkpoint every num_epochs_per_saving epochs
if do_torch_save and ((epoch + 1) % num_epochs_per_saving == 0 or (epoch + 1) >= num_epochs):
if report_epoch != best_metric_epoch:
self.checkpoint_save(
ckpt=intermediate_ckpt_path, model=model, epoch=report_epoch, best_metric=val_acc_mean
)
else:
try:
shutil.copyfile(best_ckpt_path, intermediate_ckpt_path) # if already saved once
except Exception as err:
logger.warning(f"error copying {best_ckpt_path} {intermediate_ckpt_path} {err}")
pass
if lr_scheduler is not None:
lr_scheduler.step()
if self.global_rank == 0:
# report time estimate
time_remaining_estimate = train_time * (num_epochs - epoch)
if val_loader is not None and len(val_loader) > 0:
if validation_time == 0:
validation_time = train_time
time_remaining_estimate += validation_time * len(val_schedule_list)
logger.info(
f"Estimated remaining training time for the current model fold {config('fold')} is "
f"{time_remaining_estimate/3600:.2f} hr, "
f"running time {(time.time() - pre_loop_time)/3600:.2f} hr, "
f"est total time {(time.time() - pre_loop_time + time_remaining_estimate)/3600:.2f} hr \n"
)
# end of main epoch loop
train_loader = val_loader = optimizer = None
# optionally validate best checkpoint
logger.info(f"Checking to run final testing {config('run_final_testing')}")
if config("run_final_testing"):
if distributed:
dist.barrier()
_ckpt_name = best_ckpt_path if os.path.exists(best_ckpt_path) else intermediate_ckpt_path
if not os.path.exists(_ckpt_name):
logger.info(f"Unable to validate final no checkpoints found {best_ckpt_path}, {intermediate_ckpt_path}")
else:
# self._props.pop("network", None)
# self._set_props.pop("network", None)
gc.collect()
torch.cuda.empty_cache()
best_metric = self.run_final_testing(
pretrained_ckpt_path=_ckpt_name,
progress_path=progress_path,
best_metric_epoch=best_metric_epoch,
pre_loop_time=pre_loop_time,
)
if (
self.global_rank == 0
and tb_writer is not None
and mlflow_is_imported
and mlflow.is_tracking_uri_set()
):
mlflow.log_param("acc_testing", val_acc_mean)
mlflow.log_metric("acc_testing", val_acc_mean)
if tb_writer is not None:
tb_writer.flush()
tb_writer.close()
if mlflow_is_imported and mlflow.is_tracking_uri_set():
mlflow.end_run()
logger.info(
f"=== DONE: best_metric: {best_metric:.4f} at epoch: {best_metric_epoch} of {report_num_epochs}."
f"Training time {(time.time() - pre_loop_time)/3600:.2f} hr."
)
return best_metric
def run_final_testing(self, pretrained_ckpt_path, progress_path, best_metric_epoch, pre_loop_time):
logger.info("Running final best model testing set!")
# validate
start_time = time.time()
self._props.pop("network", None)
self.parser["pretrained_ckpt_path"] = pretrained_ckpt_path
self.parser["validate#evaluator#postprocessing"] = None # not saving images
val_acc_mean, val_loss, val_acc = self.validate(val_key="testing")
validation_time = f"{time.time() - start_time:.2f}s"
val_acc_mean = float(np.mean(val_acc))
logger.info(f"Testing: loss: {val_loss:.4f} acc_avg: {val_acc_mean:.4f} acc {val_acc} time {validation_time}")
if self.global_rank == 0 and progress_path is not None:
self.save_progress_yaml(
progress_path=progress_path,
ckpt=pretrained_ckpt_path,
best_avg_score_epoch=best_metric_epoch,
best_avg_score=val_acc_mean,
validation_time=validation_time,
run_final_testing=True,
time=f"{(time.time() - pre_loop_time) / 3600:.2f} hr",
)
return val_acc_mean
def validate(self, validation_files=None, val_key=None, datalist=None):
if self.config("pretrained_ckpt_name", None) is None and self.config("pretrained_ckpt_path", None) is None:
self.parser["pretrained_ckpt_name"] = "model.pt"
logger.info("Using default model.pt checkpoint for validation.")
grouping = self.config("validate#grouping", False) # whether to computer average per datalist
if validation_files is None:
validation_files = self.read_val_datalists("validate", datalist, val_key=val_key, merge=not grouping)
if len(validation_files) == 0:
logger.warning(f"No validation files found {datalist} {val_key}!")
return 0, 0, 0
if not grouping or not isinstance(validation_files[0], (list, tuple)):
validation_files = [validation_files]
logger.info(f"validation file groups {len(validation_files)} grouping {grouping}")
val_acc_dict = {}
amp_dtype = {"float32": torch.float32, "bfloat16": torch.bfloat16, "float16": torch.float16}[
self.config("amp_dtype")
]
if amp_dtype == torch.bfloat16 and not torch.cuda.is_bf16_supported():
amp_dtype = torch.float16
logger.warning(
"bfloat16 dtype is not support on your device, changing to float16, use --amp_dtype=float16 to set manually"
)
for datalist_id, group_files in enumerate(validation_files):
self.set_val_datalist(group_files)
val_loader = self.val_loader
start_time = time.time()
val_loss, val_acc = self.val_epoch(
model=self.network,
val_loader=val_loader,
sliding_inferrer=self.config("inferer#sliding_inferer"),
loss_function=self.config("loss_function"),
acc_function=self.config("key_metric"),
rank=self.rank,
global_rank=self.global_rank,
use_amp=self.config("amp"),
amp_dtype=amp_dtype,
post_transforms=self.config("validate#evaluator#postprocessing"),
channels_last=self.config("channels_last"),
device=self.config("device"),
)
val_acc_mean = float(np.mean(val_acc))
logger.info(
f"Validation {datalist_id} complete, loss_avg: {val_loss:.4f} "
f"acc_avg: {val_acc_mean:.4f} acc {val_acc} time {time.time() - start_time:.2f}s"
)
val_acc_dict[datalist_id] = val_acc_mean
for k, v in val_acc_dict.items():
logger.info(f"group: {k} => {v:.4f}")
val_acc_mean = sum(val_acc_dict.values()) / len(val_acc_dict.values())
logger.info(f"Testing group score average: {val_acc_mean:.4f}")
return val_acc_mean, val_loss, val_acc
def infer(self, infer_files=None, infer_key=None, datalist=None):
if self.config("pretrained_ckpt_name", None) is None and self.config("pretrained_ckpt_path", None) is None:
self.parser["pretrained_ckpt_name"] = "model.pt"
logger.info("Using default model.pt checkpoint for inference.")
if infer_files is None:
infer_files = self.read_val_datalists("infer", datalist, val_key=infer_key, merge=True)
if len(infer_files) == 0:
logger.warning(f"no file to infer {datalist} {infer_key}.")
return
logger.info(f"inference files {len(infer_files)}")
self.set_val_datalist(infer_files)
val_loader = self.val_loader
amp_dtype = {"float32": torch.float32, "bfloat16": torch.bfloat16, "float16": torch.float16}[
self.config("amp_dtype")
]
if amp_dtype == torch.bfloat16 and not torch.cuda.is_bf16_supported():
amp_dtype = torch.bfloat16
logger.warning(
"bfloat16 dtype is not support on your device, changing to float16, use --amp_dtype=float16 to set manually"
)
start_time = time.time()
self.val_epoch(
model=self.network,
val_loader=val_loader,
sliding_inferrer=self.config("inferer#sliding_inferer"),
loss_function=None,
acc_function=None,
rank=self.rank,
global_rank=self.global_rank,
use_amp=self.config("amp"),
amp_dtype=amp_dtype,
post_transforms=self.config("infer#evaluator#postprocessing"),
channels_last=self.config("channels_last"),
device=self.config("device"),
)
logger.info(f"Inference complete time {time.time() - start_time:.2f}s")
return
@torch.no_grad()
def val_epoch(
self,
model,
val_loader,
sliding_inferrer,
loss_function=None,
acc_function=None,
epoch=0,
rank=0,
global_rank=0,
num_epochs=0,
use_amp=True,
amp_dtype=torch.float16,
post_transforms=None,
channels_last=False,
device=None,
):
model.eval()
distributed = dist.is_available() and dist.is_initialized()
memory_format = torch.channels_last if channels_last else torch.preserve_format
run_loss = CumulativeAverage()
run_acc = CumulativeAverage()
run_loss.append(torch.tensor(0, device=device), count=0)
avg_loss = avg_acc = 0
start_time = time.time()
# In DDP, each replica has a subset of data, but if total data length is not evenly divisible by num_replicas,
# then some replicas has 1 extra repeated item.
# For proper validation with batch of 1, we only want to collect metrics for non-repeated items,
# hence let's compute a proper subset length
nonrepeated_data_length = len(val_loader.dataset)
sampler = val_loader.sampler
if distributed and isinstance(sampler, DistributedSampler) and not sampler.drop_last:
nonrepeated_data_length = len(range(sampler.rank, len(sampler.dataset), sampler.num_replicas))
for idx, batch_data in enumerate(val_loader):
data = batch_data["image"].as_subclass(torch.Tensor).to(memory_format=memory_format, device=device)
filename = batch_data["image"].meta[ImageMetaKey.FILENAME_OR_OBJ]
batch_size = data.shape[0]
loss = acc = None
with autocast(enabled=use_amp, dtype=amp_dtype):
logits = sliding_inferrer(inputs=data, network=model)
data = None
# calc loss
if loss_function is not None:
target = batch_data["flow"].as_subclass(torch.Tensor).to(device=logits.device)
loss = loss_function(logits, target)
run_loss.append(loss.to(device=device), count=batch_size)
target = None
pred_mask_all = []
for b_ind in range(logits.shape[0]): # go over batch dim
pred_mask, p = LogitsToLabels()(logits=logits[b_ind], filename=filename)
pred_mask_all.append(pred_mask)
if acc_function is not None:
label = batch_data["label"].as_subclass(torch.Tensor)
for b_ind in range(label.shape[0]):
acc = acc_function(pred_mask_all[b_ind], label[b_ind, 0].long())
acc = acc.detach().clone() if isinstance(acc, torch.Tensor) else torch.tensor(acc)
if idx < nonrepeated_data_length:
run_acc.append(acc.to(device=device), count=1)
else:
run_acc.append(torch.zeros_like(acc, device=device), count=0)
label = None
avg_loss = loss.cpu() if loss is not None else 0
avg_acc = acc.cpu().numpy() if acc is not None else 0
logger.info(
f"Val {epoch}/{num_epochs} {idx}/{len(val_loader)} "
f"loss: {avg_loss:.4f} acc {avg_acc} time {time.time() - start_time:.2f}s"
)
if post_transforms:
seg = torch.from_numpy(np.stack(pred_mask_all, axis=0).astype(np.int32)).unsqueeze(1)
batch_data["seg"] = convert_to_dst_type(
seg, batch_data["image"], dtype=torch.int32, device=torch.device("cpu")
)[0]
for bd in decollate_batch(batch_data):
post_transforms(bd) # (currently only to save output mask)
start_time = time.time()
label = target = data = batch_data = None
if distributed:
dist.barrier()
avg_loss = run_loss.aggregate()
avg_acc = run_acc.aggregate()
if np.any(avg_acc < 0):
dist.barrier()
logger.warning(f"Avg accuracy is negative ({avg_acc}), something went wrong!!!!!")
return avg_loss, avg_acc
def train_epoch(
self,
model,
train_loader,
optimizer,
loss_function,
acc_function,
grad_scaler,
epoch,
rank,
global_rank=0,
num_epochs=0,
use_amp=True,
amp_dtype=torch.float16,
channels_last=False,
device=None,
):
model.train()
memory_format = torch.channels_last if channels_last else torch.preserve_format
run_loss = CumulativeAverage()
start_time = time.time()
avg_loss = avg_acc = 0
for idx, batch_data in enumerate(train_loader):
data = batch_data["image"].as_subclass(torch.Tensor).to(memory_format=memory_format, device=device)
target = batch_data["flow"].as_subclass(torch.Tensor).to(memory_format=memory_format, device=device)
optimizer.zero_grad(set_to_none=True)
with autocast(enabled=use_amp, dtype=amp_dtype):
logits = model(data)
# print('logits', logits.shape, logits.dtype)
loss = loss_function(logits.float(), target)
grad_scaler.scale(loss).backward()
grad_scaler.step(optimizer)
grad_scaler.update()
batch_size = data.shape[0]
run_loss.append(loss, count=batch_size)
avg_loss = run_loss.aggregate()
logger.info(
f"Epoch {epoch}/{num_epochs} {idx}/{len(train_loader)} "
f"loss: {avg_loss:.4f} time {time.time() - start_time:.2f}s "
)
start_time = time.time()
optimizer.zero_grad(set_to_none=True)
data = None
target = None
batch_data = None
return avg_loss, avg_acc
def save_history_csv(self, csv_path=None, header=None, **kwargs):
if csv_path is not None:
if header is not None:
with open(csv_path, "a") as myfile:
wrtr = csv.writer(myfile, delimiter="\t")
wrtr.writerow(header)
if len(kwargs):
with open(csv_path, "a") as myfile:
wrtr = csv.writer(myfile, delimiter="\t")
wrtr.writerow(list(kwargs.values()))
def save_progress_yaml(self, progress_path=None, ckpt=None, **report):
if ckpt is not None:
report["model"] = ckpt
report["date"] = str(datetime.now())[:19]
if progress_path is not None:
yaml.add_representer(
float, lambda dumper, value: dumper.represent_scalar("tag:yaml.org,2002:float", f"{value:.4f}")
)
with open(progress_path, "a") as progress_file:
yaml.dump([report], stream=progress_file, allow_unicode=True, default_flow_style=None, sort_keys=False)
logger.info("Progress:" + ",".join(f" {k}: {v}" for k, v in report.items()))
def checkpoint_save(self, ckpt: str, model: torch.nn.Module, **kwargs):
# save checkpoint and config
save_time = time.time()
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
if self.config("compile", False):
# remove key prefix of compiled models
state_dict = OrderedDict(
(k[len("_orig_mod.") :] if k.startswith("_orig_mod.") else k, v) for k, v in state_dict.items()
)
torch.save({"state_dict": state_dict, "config": self.parser.config, **kwargs}, ckpt)
save_time = time.time() - save_time
logger.info(f"Saving checkpoint process: {ckpt}, {kwargs}, save_time {save_time:.2f}s")
return save_time
def checkpoint_load(self, ckpt: str, model: torch.nn.Module, **kwargs):
# load checkpoint
if not os.path.isfile(ckpt):
logger.warning("Invalid checkpoint file: " + str(ckpt))
return
checkpoint = torch.load(ckpt, map_location="cpu")
model.load_state_dict(checkpoint["state_dict"], strict=True)
epoch = checkpoint.get("epoch", 0)
best_metric = checkpoint.get("best_metric", 0)
if self.config("continue", False):
if "epoch" in checkpoint:
self.parser["start_epoch"] = checkpoint["epoch"]
if "best_metric" in checkpoint:
self.parser["best_metric"] = checkpoint["best_metric"]
logger.info(
f"=> loaded checkpoint {ckpt} (epoch {epoch}) "
f"(best_metric {best_metric}) setting start_epoch {self.config('start_epoch')}"
)
self.parser["start_epoch"] = int(self.config("start_epoch")) + 1
return
def schedule_validation_epochs(self, num_epochs, num_epochs_per_validation=None, fraction=0.16) -> list:
"""
Schedule of epochs to validate (progressively more frequently)
num_epochs - total number of epochs
num_epochs_per_validation - if provided use a linear schedule with this step
init_step
"""
if num_epochs_per_validation is None:
x = (np.sin(np.linspace(0, np.pi / 2, max(10, int(fraction * num_epochs)))) * num_epochs).astype(int)
x = np.cumsum(np.sort(np.diff(np.unique(x)))[::-1])
x[-1] = num_epochs
x = x.tolist()
else:
if num_epochs_per_validation >= num_epochs:
x = [num_epochs_per_validation]
else:
x = list(range(num_epochs_per_validation, num_epochs, num_epochs_per_validation))
if len(x) == 0:
x = [0]
return x
def main(**kwargs) -> None:
workflow = VistaCell(**kwargs)
workflow.initialize()
workflow.run()
workflow.finalize()
if __name__ == "__main__":
# to be able to run directly as python scripts/workflow.py --config_file=...
# for debugging and development
from pathlib import Path
sys.path.append(str(Path(__file__).parent.parent))
# from scripts import *
fire, fire_is_imported = optional_import("fire")
if fire_is_imported:
fire.Fire(main)
else:
print("Missing package: fire")
|