|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import Iterator, Optional, Sequence, TypeVar |
|
|
|
import torch |
|
import torch.distributed as dist |
|
from torch.utils.data import Dataset, Sampler |
|
|
|
__all__ = ["DistributedWeightedSampler"] |
|
|
|
T_co = TypeVar("T_co", covariant=True) |
|
|
|
|
|
class DistributedWeightedSampler(Sampler[T_co]): |
|
def __init__( |
|
self, |
|
dataset: Dataset, |
|
weights: Sequence[float], |
|
num_samples: int, |
|
num_replicas: Optional[int] = None, |
|
rank: Optional[int] = None, |
|
shuffle: bool = True, |
|
seed: int = 0, |
|
drop_last: bool = False, |
|
) -> None: |
|
if not isinstance(num_samples, int) or isinstance(num_samples, bool) or num_samples <= 0: |
|
raise ValueError(f"num_samples should be a positive integer value, but got num_samples={num_samples}") |
|
|
|
weights_tensor = torch.as_tensor(weights, dtype=torch.float) |
|
if len(weights_tensor.shape) != 1: |
|
raise ValueError( |
|
"weights should be a 1d sequence but given " f"weights have shape {tuple(weights_tensor.shape)}" |
|
) |
|
|
|
self.weights = weights_tensor |
|
self.num_samples = num_samples |
|
|
|
if num_replicas is None: |
|
if not dist.is_available(): |
|
raise RuntimeError("Requires distributed package to be available") |
|
num_replicas = dist.get_world_size() |
|
if rank is None: |
|
if not dist.is_available(): |
|
raise RuntimeError("Requires distributed package to be available") |
|
rank = dist.get_rank() |
|
if rank >= num_replicas or rank < 0: |
|
raise ValueError(f"Invalid rank {rank}, rank should be in the interval [0, {num_replicas - 1}]") |
|
self.dataset = dataset |
|
self.num_replicas = num_replicas |
|
self.rank = rank |
|
self.epoch = 0 |
|
self.drop_last = drop_last |
|
self.shuffle = shuffle |
|
|
|
if self.shuffle: |
|
self.num_samples = int(math.ceil(self.num_samples / self.num_replicas)) |
|
else: |
|
|
|
|
|
|
|
|
|
if self.drop_last and len(self.dataset) % self.num_replicas != 0: |
|
|
|
|
|
|
|
self.num_samples = math.ceil( |
|
(len(self.dataset) - self.num_replicas) / self.num_replicas |
|
) |
|
else: |
|
self.num_samples = math.ceil(len(self.dataset) / self.num_replicas) |
|
|
|
self.total_size = self.num_samples * self.num_replicas |
|
self.shuffle = shuffle |
|
self.seed = seed |
|
|
|
def __iter__(self) -> Iterator[T_co]: |
|
if self.shuffle: |
|
|
|
g = torch.Generator() |
|
g.manual_seed(self.seed + self.epoch) |
|
indices = torch.multinomial(input=self.weights, num_samples=self.total_size, replacement=True, generator=g).tolist() |
|
else: |
|
|
|
indices = list(range(len(self.dataset))) |
|
if not self.drop_last: |
|
|
|
padding_size = self.total_size - len(indices) |
|
if padding_size <= len(indices): |
|
indices += indices[:padding_size] |
|
else: |
|
indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size] |
|
else: |
|
|
|
indices = indices[: self.total_size] |
|
assert len(indices) == self.total_size |
|
|
|
|
|
indices = indices[self.rank : self.total_size : self.num_replicas] |
|
assert len(indices) == self.num_samples |
|
|
|
return iter(indices) |
|
|
|
def __len__(self) -> int: |
|
return self.num_samples |
|
|
|
def set_epoch(self, epoch: int) -> None: |
|
self.epoch = epoch |
|
|