File size: 9,660 Bytes
43864c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59bfafb
43864c1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# Linux Kernel Anti-Pattern Detector

A comprehensive tool for detecting anti-patterns and potential issues in Linux kernel code.

## 🎯 Overview

This project provides automated static analysis tools to identify common anti-patterns, code smells, and potential issues in Linux kernel source code. The analysis covers 7 major categories including memory management, concurrency, security vulnerabilities, and code quality issues.

## πŸ“Š Recent Analysis Results

**Analysis Date:** June 29, 2025  
**Kernel Version:** Linux 6.16-rc4  
**Files Analyzed:** 35,588  
**Total Issues Found:** 3,122

### Issue Distribution
- **πŸ”΄ Critical Security Issues:** 347 (11.1%)
- **🟑 High Priority Issues:** 2,670 (85.5%)
- **πŸ”΅ Medium Priority Issues:** 105 (3.4%)

### Top Categories
1. **Concurrency Issues:** 2,314 (74.1%) - Race conditions, deadlocks
2. **Memory Management:** 356 (11.4%) - Memory leaks, use-after-free
3. **Security Vulnerabilities:** 347 (11.1%) - Buffer overflows, format strings
4. **Code Quality:** 92 (2.9%) - Magic numbers, code duplication

## πŸš€ Quick Start

### Prerequisites
- Python 3.8+
- Git
- Conda (recommended for environment management)

### Setup
```bash

# Clone the repository

git clone https://github.com/Mac-Huang/linux-kernel-anti-pattern-detector.git

cd linux-kernel-anti-pattern-detector



# Create and activate conda environment

conda create -n linux-kernel-anti-pattern-detector python=3.10 -y

conda activate linux-kernel-anti-pattern-detector



# Install dependencies

pip install -r requirements.txt

pip install -r requirements-kernel-analysis.txt

```

### Run Analysis
```bash

# Full kernel analysis (clones kernel if needed)

python tools/detectors/detector.py --clone --output data/results.json



# Concurrency-specific analysis

python scripts/analysis/concurrency_analyzer.py



# View results interactively

python scripts/reporting/view_results.py --interactive

```

## πŸ—ƒοΈ Dataset Building Pipeline

### βœ… **Successfully Implemented**

The project includes a robust dataset building pipeline for training code intelligence models on Linux kernel bug fixes.

#### **Dataset Format**
```json

{

  "input": {

    "original code": "code before the patch (extracted from a known bug-fix)",

    "instruction": "the commit message describing what this fix is"

  },

  "output": {

    "diff codes": "the unified diff patch for the bug fix"

  }

}

```

#### **Features**
- **πŸ” Intelligent Bug Detection:** Uses keyword-based filtering to identify bug-fix commits
- **πŸ“ Focused Code Extraction:** Extracts relevant code context around bug fixes
- **πŸ”§ Diff Processing:** Parses and formats unified diff patches
- **⚑ Parallel Processing:** Multi-threaded processing for large repositories
- **πŸ“Š Quality Filtering:** Only includes valid C source file modifications

#### **Usage**
```bash

# Activate environment

conda activate detector



# Build test dataset (small sample)

cd dataset_builder

python build_dataset_demo.py



# Build full dataset (entire repository)

# Edit TEST_MODE = False in build_dataset_demo.py

python build_dataset_demo.py

```

#### **Output**
- **File:** `dataset_builder/output/linux_bugfix_dataset.jsonl`
- **Format:** JSONL (one JSON object per line)
- **Content:** Bug-fix commits with original code, commit messages, and diff patches

#### **Keywords Detected**
- Memory issues: `leak`, `null`, `overflow`, `memory`
- Security: `security`, `vulnerability`, `exploit`, `buffer`
- Concurrency: `race`, `deadlock`, `lock`
- General bugs: `fix`, `bug`, `error`, `failure`, `crash`

## πŸ“ Project Structure

```

β”œβ”€β”€ πŸ“ data/                    # Analysis results and logs

β”œβ”€β”€ πŸ“ dataset_builder/         # Dataset building pipeline

β”‚   β”œβ”€β”€ build_dataset.py        # Main dataset builder

β”‚   β”œβ”€β”€ build_dataset_demo.py   # Test dataset builder

β”‚   └── output/                 # Generated datasets

β”œβ”€β”€ πŸ“ docs/                    # Documentation

β”œβ”€β”€ πŸ“ reports/                 # Generated reports

β”œβ”€β”€ πŸ“ scripts/                 # Analysis and utility scripts

β”œβ”€β”€ πŸ“ src/                     # Core source code

β”œβ”€β”€ πŸ“ tests/                   # Test files

β”œβ”€β”€ πŸ“ tools/                   # Detection tools

└── πŸ“ linux/                   # Kernel source (cloned)

```

See [PROJECT_STRUCTURE.md](PROJECT_STRUCTURE.md) for detailed structure information.

## πŸ“‹ Available Reports

### πŸ“„ Main Reports
- **[Complete Analysis Report](reports/Linux_Kernel_Anti_Pattern_Analysis_Report.md)** - Full technical analysis
- **[Executive Summary](reports/Executive_Summary.md)** - High-level overview for stakeholders

### πŸ”’ Specialized Reports
- **[Concurrency Analysis](reports/concurrency/Concurrency_Analysis_Report.md)** - Detailed concurrency issues (2,314 issues)

## πŸ› οΈ Usage Examples

### Basic Analysis
```bash

# Run complete analysis

python tools/detectors/detector.py --clone --output data/results.json



# Quick summary

python scripts/utils/quick_summary.py



# Interactive results viewer

python scripts/reporting/view_results.py --interactive

```

### Specialized Analysis
```bash

# Concurrency issues only

python scripts/analysis/concurrency_analyzer.py



# Kernel structure analysis

python scripts/analysis/analyze_kernel_structure.py

```

### Custom Configuration
```bash

# Use custom config

python tools/detectors/detector.py --config tools/detectors/config.yaml



# Analyze specific kernel path

python tools/detectors/detector.py --kernel-path /path/to/kernel

```

## πŸ” Detection Categories

### 1. Memory Management
- Memory leaks (kmalloc without kfree)
- Use-after-free bugs
- Double-free issues
- Null pointer dereferences

### 2. Concurrency
- Race conditions
- Deadlocks
- Missing locks
- Double locking
- Lock ordering violations

### 3. Security
- Buffer overflows
- Format string vulnerabilities
- Privilege escalation
- Information disclosure

### 4. Error Handling
- Unchecked return values
- Missing error handling
- Ignored error codes
- Wrong error propagation

### 5. Performance
- O(nΒ²) algorithms
- Unnecessary memory allocation
- Inefficient data structures
- Cache miss patterns

### 6. Code Quality
- Magic numbers
- Hardcoded values
- Complex functions
- Code duplication

### 7. API Usage
- Deprecated functions
- Wrong API usage
- Missing parameter validation
- Incorrect flags

## πŸ“Š Analysis Features

- **Pattern-based Detection:** Regular expression matching with context awareness
- **Parallel Processing:** Configurable concurrent analysis for performance
- **Detailed Reporting:** JSON output with file locations and line numbers
- **Interactive Viewer:** Browse and filter results by category and severity
- **Code Snippet Extraction:** View actual code around detected issues
- **Severity Classification:** Critical, High, Medium, Low priority levels

## πŸ”§ Configuration

The analysis can be customized through `tools/detectors/config.yaml`:

```yaml

detection_rules:

  memory_management:

    enabled: true

    severity: "high"

    patterns:

      - "kmalloc.*without.*kfree"

      - "use.*after.*free"

    directories: ["drivers", "kernel", "mm"]

```

## πŸ“ˆ Performance

- **Analysis Speed:** ~11 minutes for 35,588 files
- **Memory Usage:** Configurable limits (default: 1GB)
- **Parallel Processing:** Up to 4 concurrent analyzers
- **File Filtering:** Excludes generated files and build artifacts

## 🀝 Contributing

1. **Fork the repository**
2. **Create a feature branch** (`git checkout -b feature/amazing-feature`)
3. **Add your changes** following the project structure
4. **Test your changes** (`python -m pytest tests/`)
5. **Commit your changes** (`git commit -m 'Add amazing feature'`)
6. **Push to the branch** (`git push origin feature/amazing-feature`)
7. **Open a Pull Request**

### Development Guidelines
- **Analysis scripts:** Add to `scripts/analysis/`
- **Reporting tools:** Add to `scripts/reporting/`
- **Core detection:** Add to `src/detectors/`
- **Configuration:** Update `tools/detectors/config.yaml`

## πŸ“š Documentation

- **[Project Structure](PROJECT_STRUCTURE.md)** - Detailed project organization
- **[Kernel Analysis Guide](docs/kernel-analysis-guide.md)** - Comprehensive analysis guide
- **[Concurrency Analysis](reports/concurrency/Concurrency_Analysis_Report.md)** - Concurrency-specific findings

## πŸ› Known Issues

- **Code snippet extraction:** Some file paths may not match due to kernel cloning method
- **Large file handling:** Files >10MB are skipped to prevent memory issues
- **Pattern accuracy:** Some patterns may generate false positives

## πŸ“„ License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## πŸ™ Acknowledgments

- Linux kernel community for the source code
- Static analysis research community
- Contributors and maintainers

## πŸ“ž Contact

- **Repository:** https://github.com/Mac-Huang/linux-kernel-anti-pattern-detector
- **Issues:** Use GitHub Issues for bug reports and feature requests
- **Discussions:** Use GitHub Discussions for questions and ideas

---

*This tool is designed to help improve Linux kernel code quality by identifying potential issues early in the development process. The analysis results should be used as guidance for improvement rather than definitive assessments of code quality.*