Update README.md
Browse files
README.md
CHANGED
|
@@ -1,327 +1,144 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
-
|
| 6 |
-
-
|
| 7 |
-
-
|
| 8 |
-
-
|
| 9 |
-
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
-
|
| 28 |
-
-
|
| 29 |
-
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
```c
|
| 146 |
-
if (!file->filter)
|
| 147 |
-
return;
|
| 148 |
-
```
|
| 149 |
-
|
| 150 |
-
Instruction: Fix the null pointer dereference
|
| 151 |
-
|
| 152 |
-
Return the diff that fixes it:
|
| 153 |
-
"""
|
| 154 |
-
|
| 155 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
| 156 |
-
outputs = model.generate(**inputs, max_length=512, temperature=0.1)
|
| 157 |
-
fix = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 158 |
-
print(fix)
|
| 159 |
-
```
|
| 160 |
-
|
| 161 |
-
---
|
| 162 |
-
|
| 163 |
-
## 📁 Project Structure
|
| 164 |
-
|
| 165 |
-
```
|
| 166 |
-
CodeLLaMA-Linux-BugFix/
|
| 167 |
-
├── dataset_builder/
|
| 168 |
-
│ ├── extract_linux_bugfixes_parallel.py # Parallel extraction of bug fixes
|
| 169 |
-
│ ├── format_for_training.py # Format data for training
|
| 170 |
-
│ └── build_dataset.py # Main dataset builder
|
| 171 |
-
├── dataset/
|
| 172 |
-
│ ├── training_data_100k.jsonl # 100K training samples
|
| 173 |
-
│ └── training_data_prompt_completion.jsonl # Formatted training data
|
| 174 |
-
├── train/
|
| 175 |
-
│ ├── train_codellama_qlora_linux_bugfix.py # Main training script
|
| 176 |
-
│ ├── train_codellama_qlora_simple.py # Simplified training
|
| 177 |
-
│ ├── download_codellama_model.py # Model download utility
|
| 178 |
-
│ └── output/
|
| 179 |
-
│ └── qlora-codellama-bugfix/ # Trained model checkpoints
|
| 180 |
-
├── evaluate/
|
| 181 |
-
│ ├── evaluate_linux_bugfix_model.py # Evaluation script
|
| 182 |
-
│ ├── test_samples.jsonl # Test dataset
|
| 183 |
-
│ └── output/ # Evaluation results
|
| 184 |
-
│ ├── eval_results.csv # Detailed results
|
| 185 |
-
│ └── eval_results.json # JSON format results
|
| 186 |
-
├── requirements.txt # Python dependencies
|
| 187 |
-
├── README.md # This file
|
| 188 |
-
└── PROJECT_STRUCTURE.md # Detailed project overview
|
| 189 |
-
```
|
| 190 |
-
|
| 191 |
-
---
|
| 192 |
-
|
| 193 |
-
## 🧩 Features
|
| 194 |
-
|
| 195 |
-
* 🔧 **Efficient Fine-tuning**: QLoRA + 4-bit quant = massive memory savings
|
| 196 |
-
* 🧠 **Real-world commits**: From actual Linux kernel development
|
| 197 |
-
* 💡 **Context-aware**: Code context extraction around bug lines
|
| 198 |
-
* 💻 **Output-ready**: Generates valid Git-style diffs
|
| 199 |
-
* 📈 **Strong Performance**: BLEU score of 33.87 with good ROUGE metrics
|
| 200 |
-
* 🚀 **Production-ready**: Optimized for real-world deployment
|
| 201 |
-
|
| 202 |
-
---
|
| 203 |
-
|
| 204 |
-
## 📈 Evaluation Metrics
|
| 205 |
-
|
| 206 |
-
* **BLEU**: Translation-style match to reference diffs
|
| 207 |
-
* **ROUGE**: Overlap in fix content and semantic similarity
|
| 208 |
-
* **Human Evaluation**: Subjective patch quality assessment
|
| 209 |
-
|
| 210 |
-
### Current Performance
|
| 211 |
-
- **BLEU Score**: 33.87 (excellent for code generation tasks)
|
| 212 |
-
- **ROUGE-1 F1**: 0.4355 (good semantic overlap)
|
| 213 |
-
- **ROUGE-2 F1**: 0.3457 (reasonable bigram matching)
|
| 214 |
-
- **ROUGE-L F1**: 0.3612 (good longest common subsequence)
|
| 215 |
-
|
| 216 |
-
---
|
| 217 |
-
|
| 218 |
-
## 🧪 Use Cases
|
| 219 |
-
|
| 220 |
-
* **Automated kernel bug fixing**: Generate fixes for common kernel bugs
|
| 221 |
-
* **Code review assistance**: Help reviewers identify potential issues
|
| 222 |
-
* **Teaching/debugging kernel code**: Educational tool for kernel development
|
| 223 |
-
* **Research in automated program repair (APR)**: Academic research applications
|
| 224 |
-
* **CI/CD integration**: Automated testing and fixing in development pipelines
|
| 225 |
-
|
| 226 |
-
---
|
| 227 |
-
|
| 228 |
-
## 🔬 Technical Highlights
|
| 229 |
-
|
| 230 |
-
### Memory & Speed Optimizations
|
| 231 |
-
|
| 232 |
-
* 4-bit quantization (NF4)
|
| 233 |
-
* Gradient checkpointing
|
| 234 |
-
* Mixed precision (bfloat16)
|
| 235 |
-
* Gradient accumulation
|
| 236 |
-
* LoRA parameter efficiency
|
| 237 |
-
|
| 238 |
-
### Training Efficiency
|
| 239 |
-
|
| 240 |
-
* **QLoRA**: Reduces memory usage by ~75%
|
| 241 |
-
* **4-bit quantization**: Further memory optimization
|
| 242 |
-
* **Gradient checkpointing**: Trades compute for memory
|
| 243 |
-
* **Mixed precision**: Faster training with maintained accuracy
|
| 244 |
-
|
| 245 |
-
---
|
| 246 |
-
|
| 247 |
-
## 🛠️ Advanced Usage
|
| 248 |
-
|
| 249 |
-
### Custom Training
|
| 250 |
-
|
| 251 |
-
```bash
|
| 252 |
-
# Train with custom parameters
|
| 253 |
-
python train_codellama_qlora_linux_bugfix.py \
|
| 254 |
-
--learning_rate 1e-4 \
|
| 255 |
-
--num_epochs 5 \
|
| 256 |
-
--batch_size 32 \
|
| 257 |
-
--lora_r 32 \
|
| 258 |
-
--lora_alpha 16
|
| 259 |
-
```
|
| 260 |
-
|
| 261 |
-
### Evaluation on Custom Data
|
| 262 |
-
|
| 263 |
-
```bash
|
| 264 |
-
# Evaluate on your own test set
|
| 265 |
-
python evaluate_linux_bugfix_model.py \
|
| 266 |
-
--test_file your_test_data.jsonl \
|
| 267 |
-
--output_dir custom_eval_results
|
| 268 |
-
```
|
| 269 |
-
|
| 270 |
-
---
|
| 271 |
-
|
| 272 |
-
## 🤝 Contributing
|
| 273 |
-
|
| 274 |
-
1. Fork this repo
|
| 275 |
-
2. Create a feature branch (`git checkout -b feature/amazing-feature`)
|
| 276 |
-
3. Commit your changes (`git commit -m 'Add amazing feature'`)
|
| 277 |
-
4. Push to the branch (`git push origin feature/amazing-feature`)
|
| 278 |
-
5. Open a Pull Request 🙌
|
| 279 |
-
|
| 280 |
-
### Development Guidelines
|
| 281 |
-
|
| 282 |
-
- Follow PEP 8 style guidelines
|
| 283 |
-
- Add tests for new features
|
| 284 |
-
- Update documentation for API changes
|
| 285 |
-
- Ensure all tests pass before submitting PR
|
| 286 |
-
|
| 287 |
-
---
|
| 288 |
-
|
| 289 |
-
## 📄 License
|
| 290 |
-
|
| 291 |
-
MIT License – see `LICENSE` file for details.
|
| 292 |
-
|
| 293 |
-
---
|
| 294 |
-
|
| 295 |
-
## 🙏 Acknowledgments
|
| 296 |
-
|
| 297 |
-
* **Meta** for CodeLLaMA base model
|
| 298 |
-
* **Hugging Face** for Transformers + PEFT libraries
|
| 299 |
-
* **The Linux kernel community** for open access to commit data
|
| 300 |
-
* **Microsoft** for introducing LoRA technique
|
| 301 |
-
* **University of Washington** for QLoRA research
|
| 302 |
-
|
| 303 |
-
---
|
| 304 |
-
|
| 305 |
-
## 📚 References
|
| 306 |
-
|
| 307 |
-
* [CodeLLaMA (Meta, 2023)](https://arxiv.org/abs/2308.12950)
|
| 308 |
-
* [QLoRA (Dettmers et al., 2023)](https://arxiv.org/abs/2305.14314)
|
| 309 |
-
* [LoRA (Hu et al., 2021)](https://arxiv.org/abs/2106.09685)
|
| 310 |
-
* [Automated Program Repair: A Survey](https://ieeexplore.ieee.org/document/8449519)
|
| 311 |
-
|
| 312 |
-
---
|
| 313 |
-
|
| 314 |
-
## 📞 Support
|
| 315 |
-
|
| 316 |
-
For questions, issues, or contributions:
|
| 317 |
-
- Open an issue on GitHub
|
| 318 |
-
- Check the project documentation
|
| 319 |
-
- Review the evaluation results in `evaluate/output/`
|
| 320 |
-
|
| 321 |
-
---
|
| 322 |
-
|
| 323 |
-
## 🔄 Version History
|
| 324 |
-
|
| 325 |
-
- **v1.0.0**: Initial release with QLoRA training
|
| 326 |
-
- **v1.1.0**: Added parallel dataset extraction
|
| 327 |
-
- **v1.2.0**: Improved evaluation metrics and documentation
|
|
|
|
| 1 |
+
````markdown
|
| 2 |
+
---
|
| 3 |
+
license: mit
|
| 4 |
+
tags:
|
| 5 |
+
- codellama
|
| 6 |
+
- linux
|
| 7 |
+
- bugfix
|
| 8 |
+
- lora
|
| 9 |
+
- qlora
|
| 10 |
+
- git-diff
|
| 11 |
+
base_model: codellama/CodeLLaMA-7b-Instruct-hf
|
| 12 |
+
model_type: LlamaForCausalLM
|
| 13 |
+
library_name: peft
|
| 14 |
+
pipeline_tag: text-generation
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# CodeLLaMA-Linux-BugFix
|
| 18 |
+
|
| 19 |
+
A fine-tuned version of `CodeLLaMA-7B-Instruct`, designed specifically for Linux kernel bug fixing using QLoRA (Quantized Low-Rank Adaptation). The model learns to generate Git diff patches based on buggy C code and commit messages.
|
| 20 |
+
|
| 21 |
+
---
|
| 22 |
+
|
| 23 |
+
## 🎯 Overview
|
| 24 |
+
|
| 25 |
+
This project targets automated Linux kernel bug fixing by:
|
| 26 |
+
|
| 27 |
+
- Mining real commit data from kernel Git history
|
| 28 |
+
- Training a QLoRA model to generate Git-style fixes
|
| 29 |
+
- Evaluating performance using BLEU and ROUGE
|
| 30 |
+
- Supporting integration into code review pipelines
|
| 31 |
+
|
| 32 |
+
---
|
| 33 |
+
|
| 34 |
+
## 📊 Performance Results
|
| 35 |
+
|
| 36 |
+
**BLEU Score**: 33.87
|
| 37 |
+
|
| 38 |
+
**ROUGE Scores**:
|
| 39 |
+
- ROUGE-1: P=0.3775, R=0.7306, F1=0.4355
|
| 40 |
+
- ROUGE-2: P=0.2898, R=0.6096, F1=0.3457
|
| 41 |
+
- ROUGE-L: P=0.3023, R=0.6333, F1=0.3612
|
| 42 |
+
|
| 43 |
+
These results show that the model generates high-quality diffs with good semantic similarity to ground-truth patches.
|
| 44 |
+
|
| 45 |
+
---
|
| 46 |
+
|
| 47 |
+
## 🧠 Model Configuration
|
| 48 |
+
|
| 49 |
+
- **Base model**: `CodeLLaMA-7B-Instruct`
|
| 50 |
+
- **Fine-tuning**: QLoRA (LoRA r=64, α=16, dropout=0.1)
|
| 51 |
+
- **Quantization**: 4-bit NF4
|
| 52 |
+
- **Training**: 3 epochs, batch size 64, LR 2e-4
|
| 53 |
+
- **Precision**: bfloat16 with gradient checkpointing
|
| 54 |
+
- **Hardware**: 1× NVIDIA H200 (144 GB VRAM)
|
| 55 |
+
|
| 56 |
+
---
|
| 57 |
+
|
| 58 |
+
## 🗃️ Dataset
|
| 59 |
+
|
| 60 |
+
- 100,000 samples from Linux kernel Git commits
|
| 61 |
+
- Format: JSONL with `"prompt"` and `"completion"` fields
|
| 62 |
+
- Content: C code segments + commit messages → Git diffs
|
| 63 |
+
- Source: Bug-fix commits filtered by keywords like `fix`, `null`, `race`, `panic`
|
| 64 |
+
|
| 65 |
+
---
|
| 66 |
+
|
| 67 |
+
## 🚀 Usage
|
| 68 |
+
|
| 69 |
+
```python
|
| 70 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 71 |
+
from peft import PeftModel
|
| 72 |
+
|
| 73 |
+
model = AutoModelForCausalLM.from_pretrained("codellama/CodeLLaMA-7b-Instruct-hf")
|
| 74 |
+
model = PeftModel.from_pretrained(model, "train/output/qlora-codellama-bugfix")
|
| 75 |
+
tokenizer = AutoTokenizer.from_pretrained("codellama/CodeLLaMA-7b-Instruct-hf")
|
| 76 |
+
|
| 77 |
+
prompt = '''
|
| 78 |
+
Given the following original C code:
|
| 79 |
+
```c
|
| 80 |
+
if (!file->filter)
|
| 81 |
+
return;
|
| 82 |
+
````
|
| 83 |
+
|
| 84 |
+
Instruction: Fix the null pointer dereference
|
| 85 |
+
|
| 86 |
+
Return the diff that fixes it:
|
| 87 |
+
'''
|
| 88 |
+
|
| 89 |
+
inputs = tokenizer(prompt, return\_tensors="pt")
|
| 90 |
+
outputs = model.generate(\*\*inputs, max\_length=512, temperature=0.1)
|
| 91 |
+
fix = tokenizer.decode(outputs\[0], skip\_special\_tokens=True)
|
| 92 |
+
print(fix)
|
| 93 |
+
|
| 94 |
+
```
|
| 95 |
+
|
| 96 |
+
---
|
| 97 |
+
|
| 98 |
+
## 📁 Structure
|
| 99 |
+
|
| 100 |
+
```
|
| 101 |
+
|
| 102 |
+
CodeLLaMA-Linux-BugFix/
|
| 103 |
+
├── dataset/ # Raw and processed JSONL files
|
| 104 |
+
├── dataset\_builder/ # Scripts for mining & formatting commits
|
| 105 |
+
├── train/ # Training scripts & checkpoints
|
| 106 |
+
├── evaluate/ # Evaluation scripts & results
|
| 107 |
+
└── requirements.txt # Dependencies
|
| 108 |
+
|
| 109 |
+
```
|
| 110 |
+
|
| 111 |
+
---
|
| 112 |
+
|
| 113 |
+
## 📈 Metrics
|
| 114 |
+
|
| 115 |
+
| Metric | Score |
|
| 116 |
+
|----------|--------|
|
| 117 |
+
| BLEU | 33.87 |
|
| 118 |
+
| ROUGE-1 | 0.4355 |
|
| 119 |
+
| ROUGE-2 | 0.3457 |
|
| 120 |
+
| ROUGE-L | 0.3612 |
|
| 121 |
+
|
| 122 |
+
---
|
| 123 |
+
|
| 124 |
+
## 🔬 Use Cases
|
| 125 |
+
|
| 126 |
+
- Kernel patch suggestion tools
|
| 127 |
+
- Code review assistants
|
| 128 |
+
- Bug localization + repair research
|
| 129 |
+
- APR benchmarks for kernel code
|
| 130 |
+
|
| 131 |
+
---
|
| 132 |
+
|
| 133 |
+
## 📄 License
|
| 134 |
+
|
| 135 |
+
MIT License
|
| 136 |
+
|
| 137 |
+
---
|
| 138 |
+
|
| 139 |
+
## 📚 References
|
| 140 |
+
|
| 141 |
+
- [CodeLLaMA](https://arxiv.org/abs/2308.12950)
|
| 142 |
+
- [QLoRA](https://arxiv.org/abs/2305.14314)
|
| 143 |
+
- [LoRA](https://arxiv.org/abs/2106.09685)
|
| 144 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|