Mac commited on
Commit
bf46039
·
1 Parent(s): 8046c68

Push full project updates including refactored code, data, and documentation

Browse files
train/output/qlora-codellama-bugfix/README.md CHANGED
@@ -4,205 +4,171 @@ tags:
4
  - linux
5
  - bugfix
6
  - codellama
 
 
 
7
  model_type: causal-lm
8
  library_name: transformers
9
  pipeline_tag: text-generation
 
 
 
 
10
  ---
11
 
12
- # Model Card for Model ID
13
 
14
- <!-- Provide a quick summary of what the model is/does. -->
15
 
 
16
 
 
17
 
18
- ## Model Details
19
-
20
- ### Model Description
21
-
22
- <!-- Provide a longer summary of what this model is. -->
23
-
24
-
25
-
26
- - **Developed by:** [More Information Needed]
27
- - **Funded by [optional]:** [More Information Needed]
28
- - **Shared by [optional]:** [More Information Needed]
29
- - **Model type:** [More Information Needed]
30
- - **Language(s) (NLP):** [More Information Needed]
31
- - **License:** [More Information Needed]
32
- - **Finetuned from model [optional]:** [More Information Needed]
33
-
34
- ### Model Sources [optional]
35
-
36
- <!-- Provide the basic links for the model. -->
37
-
38
- - **Repository:** [More Information Needed]
39
- - **Paper [optional]:** [More Information Needed]
40
- - **Demo [optional]:** [More Information Needed]
41
 
42
  ## Uses
43
 
44
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
45
-
46
  ### Direct Use
47
 
48
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
49
-
50
- [More Information Needed]
 
 
51
 
52
- ### Downstream Use [optional]
53
 
54
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
55
-
56
- [More Information Needed]
 
 
57
 
58
  ### Out-of-Scope Use
59
 
60
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
61
-
62
- [More Information Needed]
 
 
63
 
64
  ## Bias, Risks, and Limitations
65
 
66
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
67
-
68
- [More Information Needed]
 
 
69
 
70
  ### Recommendations
71
 
72
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
73
-
74
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
75
 
76
  ## How to Get Started with the Model
77
 
78
- Use the code below to get started with the model.
 
79
 
80
- [More Information Needed]
 
 
81
 
82
- ## Training Details
 
 
 
 
 
 
 
83
 
84
- ### Training Data
85
 
86
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
87
 
88
- [More Information Needed]
 
 
 
89
 
90
- ### Training Procedure
91
 
92
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
93
 
94
- #### Preprocessing [optional]
 
 
 
95
 
96
- [More Information Needed]
97
 
 
 
 
 
98
 
99
  #### Training Hyperparameters
100
-
101
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
102
-
103
- #### Speeds, Sizes, Times [optional]
104
-
105
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
106
-
107
- [More Information Needed]
108
 
109
  ## Evaluation
110
 
111
- <!-- This section describes the evaluation protocols and provides the results. -->
112
-
113
- ### Testing Data, Factors & Metrics
114
-
115
- #### Testing Data
116
-
117
- <!-- This should link to a Dataset Card if possible. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Factors
122
-
123
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
124
 
125
- [More Information Needed]
126
-
127
- #### Metrics
128
-
129
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
130
-
131
- [More Information Needed]
132
 
133
  ### Results
 
134
 
135
- [More Information Needed]
136
-
137
- #### Summary
138
-
139
-
140
-
141
- ## Model Examination [optional]
142
-
143
- <!-- Relevant interpretability work for the model goes here -->
144
-
145
- [More Information Needed]
146
-
147
- ## Environmental Impact
148
-
149
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
150
-
151
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
152
-
153
- - **Hardware Type:** [More Information Needed]
154
- - **Hours used:** [More Information Needed]
155
- - **Cloud Provider:** [More Information Needed]
156
- - **Compute Region:** [More Information Needed]
157
- - **Carbon Emitted:** [More Information Needed]
158
-
159
- ## Technical Specifications [optional]
160
-
161
- ### Model Architecture and Objective
162
 
163
- [More Information Needed]
 
 
 
164
 
165
  ### Compute Infrastructure
 
 
 
166
 
167
- [More Information Needed]
168
-
169
- #### Hardware
170
-
171
- [More Information Needed]
172
-
173
- #### Software
174
-
175
- [More Information Needed]
176
-
177
- ## Citation [optional]
178
-
179
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
180
-
181
- **BibTeX:**
182
-
183
- [More Information Needed]
184
-
185
- **APA:**
186
-
187
- [More Information Needed]
188
-
189
- ## Glossary [optional]
190
-
191
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
192
-
193
- [More Information Needed]
194
-
195
- ## More Information [optional]
196
 
197
- [More Information Needed]
198
 
199
- ## Model Card Authors [optional]
 
 
 
 
 
 
 
200
 
201
- [More Information Needed]
202
 
203
- ## Model Card Contact
 
204
 
205
- [More Information Needed]
206
- ### Framework versions
207
 
208
- - PEFT 0.16.0
 
 
 
4
  - linux
5
  - bugfix
6
  - codellama
7
+ - qlora
8
+ - transformers
9
+ - causal-lm
10
  model_type: causal-lm
11
  library_name: transformers
12
  pipeline_tag: text-generation
13
+ base_model: codellama/CodeLLaMA-7b-Instruct-hf
14
+ language:
15
+ - en
16
+ - c
17
  ---
18
 
19
+ # CodeLLaMA-Linux-BugFix
20
 
21
+ A fine-tuned CodeLLaMA-7B-Instruct model specifically designed for Linux kernel bug fixing. This model generates Git diff patches from buggy C code and commit messages.
22
 
23
+ ## Model Description
24
 
25
+ This model is a QLoRA fine-tuned version of CodeLLaMA-7B-Instruct, trained on a dataset of Linux kernel bug fixes extracted from Git commits. It learns to generate appropriate Git diff patches that can fix bugs in C code.
26
 
27
+ - **Developed by:** Maaac
28
+ - **Model type:** Causal Language Model (QLoRA fine-tuned)
29
+ - **Language(s):** English, C
30
+ - **License:** MIT
31
+ - **Finetuned from model:** codellama/CodeLLaMA-7b-Instruct-hf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
  ## Uses
34
 
 
 
35
  ### Direct Use
36
 
37
+ This model is designed to:
38
+ - Generate Git diff patches for Linux kernel bug fixes
39
+ - Assist developers in fixing common kernel bugs
40
+ - Provide automated code review suggestions
41
+ - Help with learning Linux kernel development patterns
42
 
43
+ ### Downstream Use
44
 
45
+ The model can be integrated into:
46
+ - Automated code review systems
47
+ - Development IDEs and editors
48
+ - Continuous integration pipelines
49
+ - Educational tools for kernel development
50
 
51
  ### Out-of-Scope Use
52
 
53
+ This model is not suitable for:
54
+ - Non-Linux kernel code
55
+ - Non-C programming languages
56
+ - Security-critical applications without human review
57
+ - Production systems without proper validation
58
 
59
  ## Bias, Risks, and Limitations
60
 
61
+ ### Limitations
62
+ - Focused specifically on Linux kernel C code
63
+ - May not generalize to other codebases
64
+ - Generated fixes should be reviewed by human developers
65
+ - Limited to the patterns present in the training data
66
 
67
  ### Recommendations
68
 
69
+ Users should:
70
+ - Always review generated patches before applying
71
+ - Test fixes in a safe environment first
72
+ - Understand the context of the bug being fixed
73
+ - Use as a development aid, not a replacement for human expertise
74
 
75
  ## How to Get Started with the Model
76
 
77
+ ```python
78
+ from transformers import AutoModelForCausalLM, AutoTokenizer
79
 
80
+ # Load the model
81
+ model = AutoModelForCausalLM.from_pretrained("Maaac/CodeLLaMA-Linux-BugFix")
82
+ tokenizer = AutoTokenizer.from_pretrained("Maaac/CodeLLaMA-Linux-BugFix")
83
 
84
+ # Example usage
85
+ prompt = """Given the following original C code:
86
+ int *ptr = kmalloc(sizeof(int), GFP_KERNEL);
87
+ if (!ptr) {
88
+ return -ENOMEM;
89
+ }
90
+ // ... use ptr ...
91
+ // Missing kfree(ptr)
92
 
93
+ Instruction: Fix memory leak by adding proper cleanup
94
 
95
+ Return the diff that fixes it:
96
+ """
97
 
98
+ inputs = tokenizer(prompt, return_tensors="pt")
99
+ outputs = model.generate(**inputs, max_new_tokens=256)
100
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
101
+ ```
102
 
103
+ ## Training Details
104
 
105
+ ### Training Data
106
 
107
+ - **Source:** Linux kernel Git repository
108
+ - **Size:** 100,000 bug-fix samples
109
+ - **Format:** JSONL with prompt-completion pairs
110
+ - **Extraction Method:** PyDriller analysis of commit history
111
 
112
+ ### Training Procedure
113
 
114
+ #### Preprocessing
115
+ - Extracted bug-fix commits using keyword filtering
116
+ - Captured code context (10 lines before/after bug location)
117
+ - Converted to prompt-completion format for supervised learning
118
 
119
  #### Training Hyperparameters
120
+ - **Base Model:** codellama/CodeLLaMA-7b-Instruct-hf
121
+ - **Method:** QLoRA with 4-bit quantization
122
+ - **LoRA Config:** r=64, alpha=16, dropout=0.1
123
+ - **Training:** 3 epochs, batch size 64, learning rate 2e-4
124
+ - **Hardware:** Optimized for H200 GPU with bfloat16
 
 
 
125
 
126
  ## Evaluation
127
 
128
+ ### Testing Data
129
+ - Separate evaluation dataset with known bug-fix pairs
130
+ - Focused on common Linux kernel bug patterns
 
 
 
 
 
 
 
 
 
 
131
 
132
+ ### Metrics
133
+ - **BLEU Score:** Measures translation quality of generated diffs
134
+ - **ROUGE Score:** Evaluates overlap between predicted and actual fixes
135
+ - **Human Evaluation:** Qualitative assessment of fix quality
 
 
 
136
 
137
  ### Results
138
+ The model demonstrates the ability to generate contextually appropriate Git diff patches for Linux kernel bugs, though results should be validated by human developers.
139
 
140
+ ## Technical Specifications
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141
 
142
+ ### Model Architecture
143
+ - **Base:** CodeLLaMA-7B-Instruct (7 billion parameters)
144
+ - **Adapter:** LoRA layers for efficient fine-tuning
145
+ - **Output:** Generates Git diff format patches
146
 
147
  ### Compute Infrastructure
148
+ - **Hardware:** H200 GPU
149
+ - **Framework:** PyTorch with Transformers
150
+ - **Quantization:** 4-bit QLoRA for memory efficiency
151
 
152
+ ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
 
154
+ If you use this model in your research, please cite:
155
 
156
+ ```bibtex
157
+ @misc{CodeLLaMA-Linux-BugFix,
158
+ author = {Maaac},
159
+ title = {CodeLLaMA-Linux-BugFix: A Fine-tuned Model for Linux Kernel Bug Fixing},
160
+ year = {2024},
161
+ url = {https://huggingface.co/Maaac/CodeLLaMA-Linux-BugFix}
162
+ }
163
+ ```
164
 
165
+ ## Model Card Authors
166
 
167
+ - **Author:** Maaac
168
+ - **Contact:** [Your contact information]
169
 
170
+ ## Framework Versions
 
171
 
172
+ - PEFT 0.16.0
173
+ - Transformers 4.53.1
174
+ - PyTorch 2.7.1