File size: 7,932 Bytes
bc55b34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's Transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llava/modeling_llava.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import TYPE_CHECKING, List, Sequence, Set, Tuple, Union

import torch
import transformers.models
from transformers.activations import ACT2FN
from transformers.utils import logging

from ...extras.logging import get_logger


if TYPE_CHECKING:
    from transformers import LlavaConfig, PretrainedConfig, PreTrainedModel

    from ...hparams import FinetuningArguments, ModelArguments


logger = get_logger(__name__)
transformers_logger = logging.get_logger(__name__)


class LlavaMultiModalProjectorForYiVL(torch.nn.Module):
    def __init__(self, config: "LlavaConfig") -> None:
        super().__init__()

        self.config = config
        if config is None:
            return

        self.linear_1 = torch.nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
        self.linear_2 = torch.nn.LayerNorm(config.text_config.hidden_size, bias=True)
        self.linear_3 = torch.nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
        self.linear_4 = torch.nn.LayerNorm(config.text_config.hidden_size, bias=True)
        self.act = ACT2FN[config.projector_hidden_act]

    def forward(self, image_features: "torch.Tensor") -> "torch.Tensor":
        hidden_states = self.linear_1(image_features)
        hidden_states = self.linear_2(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.linear_3(hidden_states)
        hidden_states = self.linear_4(hidden_states)
        if hidden_states.dtype == torch.float32:
            if torch.is_autocast_enabled():
                target_dtype = torch.get_autocast_gpu_dtype()
            elif hasattr(self.config, "_pre_quantization_dtype"):
                target_dtype = self.config._pre_quantization_dtype
            else:
                target_dtype = self.linear_1.weight.dtype

            transformers_logger.warning_once("The hidden states seems to be silently casted in float32.")
            hidden_states = hidden_states.to(target_dtype)

        return hidden_states


class LlavaMultiModalProjectorForYiVLForVLLM(LlavaMultiModalProjectorForYiVL):
    def __init__(self, vision_hidden_size: int, text_hidden_size: int, projector_hidden_act: str) -> None:
        super().__init__(config=None)

        self.linear_1 = torch.nn.Linear(vision_hidden_size, text_hidden_size, bias=True)
        self.linear_2 = torch.nn.LayerNorm(text_hidden_size, bias=True)
        self.linear_3 = torch.nn.Linear(text_hidden_size, text_hidden_size, bias=True)
        self.linear_4 = torch.nn.LayerNorm(text_hidden_size, bias=True)
        self.act = ACT2FN[projector_hidden_act]


def autocast_projector_dtype(model: "PreTrainedModel", model_args: "ModelArguments") -> None:
    r"""
    Casts projector output to half precision for fine-tuning quantized VLMs.
    """

    def _mm_projector_forward_post_hook(
        module: "torch.nn.Module", args: Tuple["torch.Tensor"], output: "torch.Tensor"
    ) -> "torch.Tensor":
        return output.to(model_args.compute_dtype)

    if getattr(model, "quantization_method", None):
        model_type = getattr(model.config, "model_type", None)
        if model_type in ["llava", "llava_next", "llava_next_video", "paligemma", "video_llava"]:
            mm_projector: "torch.nn.Module" = getattr(model, "multi_modal_projector")
        elif model_type == "qwen2_vl":
            mm_projector: "torch.nn.Module" = getattr(getattr(model, "visual"), "merger")
        else:
            return

        logger.info("Casting multimodal projector outputs in {}.".format(model_args.compute_dtype))
        mm_projector.register_forward_hook(_mm_projector_forward_post_hook)


def configure_visual_model(config: "PretrainedConfig") -> None:
    r"""
    Patches VLMs before loading them.
    """
    model_type = getattr(config, "model_type", None)
    if model_type in [
        "llava",
        "llava_next",
        "llava_next_video",
        "paligemma",
        "video_llava",
    ]:  # required for ds zero3 and valuehead models
        setattr(config, "hidden_size", getattr(config.text_config, "hidden_size", None))

    if getattr(config, "is_yi_vl_derived_model", None):
        logger.info("Detected Yi-VL model, applying projector patch.")
        transformers.models.llava.modeling_llava.LlavaMultiModalProjector = LlavaMultiModalProjectorForYiVL


def get_forbidden_modules(config: "PretrainedConfig", finetuning_args: "FinetuningArguments") -> Set[str]:
    r"""
    Freezes vision tower and language model for VLM full/freeze tuning.
    """
    model_type = getattr(config, "model_type", None)
    forbidden_modules = set()
    if model_type in ["llava", "llava_next", "llava_next_video", "paligemma", "video_llava"]:
        if finetuning_args.freeze_vision_tower:
            forbidden_modules.add("vision_tower")

        if finetuning_args.train_mm_proj_only:
            forbidden_modules.add("language_model")

    elif model_type == "qwen2_vl":
        if finetuning_args.freeze_vision_tower:
            forbidden_modules.add("visual")

        if finetuning_args.train_mm_proj_only:
            raise ValueError("Qwen2-VL models do not support `train_mm_proj_only`.")

    return forbidden_modules


def get_image_seqlen(config: "PretrainedConfig") -> int:
    r"""
    Computes the number of special tokens per image.
    """
    model_type = getattr(config, "model_type", None)
    if model_type == "llava":
        image_seqlen = (config.vision_config.image_size // config.vision_config.patch_size) ** 2
        if getattr(config, "vision_feature_select_strategy", "default") == "full":  # add [CLS] token
            image_seqlen += 1
    elif model_type == "paligemma":
        image_seqlen = config.vision_config.num_image_tokens
    else:
        image_seqlen = -1

    return image_seqlen


def get_patch_size(config: "PretrainedConfig") -> int:
    r"""
    Computes the patch size of the vit.
    """
    patch_size = getattr(config.vision_config, "patch_size", -1)
    return patch_size


def get_vision_feature_select_strategy(config: "PretrainedConfig") -> int:
    r"""
    Get the vision_feature_select_strategy.
    """
    vision_feature_select_strategy = getattr(config, "vision_feature_select_strategy", "default")
    return vision_feature_select_strategy


def patch_target_modules(
    config: "PretrainedConfig", finetuning_args: "FinetuningArguments", target_modules: Sequence[str]
) -> Union[str, List[str]]:
    r"""
    Freezes vision tower for VLM LoRA tuning.
    """
    model_type = getattr(config, "model_type", None)
    if finetuning_args.freeze_vision_tower:
        if model_type in ["llava", "llava_next", "llava_next_video", "paligemma", "video_llava"]:
            return "^(?!.*vision_tower).*(?:{}).*".format("|".join(target_modules))
        elif model_type == "qwen2_vl":
            return "^(?!.*visual).*(?:{}).*".format("|".join(target_modules))
        else:
            return target_modules
    else:
        if model_type == "qwen2_vl":
            return "^(?!.*patch_embed).*(?:{}).*".format("|".join(target_modules))
        else:
            return target_modules