File size: 2,420 Bytes
bc55b34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from types import MethodType
from typing import TYPE_CHECKING, Optional

from transformers import Trainer
from typing_extensions import override

from ...extras.logging import get_logger
from ..callbacks import PissaConvertCallback, SaveProcessorCallback
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler


if TYPE_CHECKING:
    import torch
    from transformers import ProcessorMixin

    from ...hparams import FinetuningArguments


logger = get_logger(__name__)


class CustomTrainer(Trainer):
    r"""
    Inherits Trainer for custom optimizer.
    """

    def __init__(
        self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs
    ) -> None:
        super().__init__(**kwargs)
        self.finetuning_args = finetuning_args

        if processor is not None:
            self.add_callback(SaveProcessorCallback(processor))

        if finetuning_args.pissa_convert:
            self.add_callback(PissaConvertCallback)

        if finetuning_args.use_badam:
            from badam import BAdamCallback, clip_grad_norm_old_version

            self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
            self.add_callback(BAdamCallback)

    @override
    def create_optimizer(self) -> "torch.optim.Optimizer":
        if self.optimizer is None:
            self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args)
        return super().create_optimizer()

    @override
    def create_scheduler(
        self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
    ) -> "torch.optim.lr_scheduler.LRScheduler":
        create_custom_scheduler(self.args, num_training_steps, optimizer)
        return super().create_scheduler(num_training_steps, optimizer)