File size: 7,551 Bytes
bc55b34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from typing import TYPE_CHECKING, List, Sequence

import pytest
from transformers import AutoTokenizer

from llamafactory.data import get_template_and_fix_tokenizer
from llamafactory.data.template import _get_jinja_template
from llamafactory.hparams import DataArguments


if TYPE_CHECKING:
    from transformers import PreTrainedTokenizer


HF_TOKEN = os.environ.get("HF_TOKEN", None)

TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")

MESSAGES = [
    {"role": "user", "content": "How are you"},
    {"role": "assistant", "content": "I am fine!"},
    {"role": "user", "content": "你好"},
    {"role": "assistant", "content": "很高兴认识你!"},
]


def _check_tokenization(
    tokenizer: "PreTrainedTokenizer", batch_input_ids: Sequence[Sequence[int]], batch_text: Sequence[str]
) -> None:
    for input_ids, text in zip(batch_input_ids, batch_text):
        assert input_ids == tokenizer.encode(text, add_special_tokens=False)
        assert tokenizer.decode(input_ids) == text


def _check_single_template(
    model_id: str, template_name: str, prompt_str: str, answer_str: str, extra_str: str, use_fast: bool
) -> List[str]:
    tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=use_fast, token=HF_TOKEN)
    content_str = tokenizer.apply_chat_template(MESSAGES, tokenize=False)
    content_ids = tokenizer.apply_chat_template(MESSAGES, tokenize=True)
    template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template=template_name))
    prompt_ids, answer_ids = template.encode_oneturn(tokenizer, MESSAGES)
    assert content_str == prompt_str + answer_str + extra_str
    assert content_ids == prompt_ids + answer_ids + tokenizer.encode(extra_str, add_special_tokens=False)
    _check_tokenization(tokenizer, (prompt_ids, answer_ids), (prompt_str, answer_str))
    return content_ids


def _check_template(model_id: str, template_name: str, prompt_str: str, answer_str: str, extra_str: str = "") -> None:
    """
    Checks template for both the slow tokenizer and the fast tokenizer.

    Args:
        model_id: the model id on hugging face hub.
        template_name: the template name.
        prompt_str: the string corresponding to the prompt part.
        answer_str: the string corresponding to the answer part.
        extra_str: the extra string in the jinja template of the original tokenizer.
    """
    slow_ids = _check_single_template(model_id, template_name, prompt_str, answer_str, extra_str, use_fast=False)
    fast_ids = _check_single_template(model_id, template_name, prompt_str, answer_str, extra_str, use_fast=True)
    assert slow_ids == fast_ids


@pytest.mark.parametrize("use_fast", [True, False])
def test_encode_oneturn(use_fast: bool):
    tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
    template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
    prompt_ids, answer_ids = template.encode_oneturn(tokenizer, MESSAGES)
    prompt_str = (
        "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>"
        "<|start_header_id|>assistant<|end_header_id|>\n\nI am fine!<|eot_id|>"
        "<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>"
        "<|start_header_id|>assistant<|end_header_id|>\n\n"
    )
    answer_str = "很高兴认识你!<|eot_id|>"
    _check_tokenization(tokenizer, (prompt_ids, answer_ids), (prompt_str, answer_str))


@pytest.mark.parametrize("use_fast", [True, False])
def test_encode_multiturn(use_fast: bool):
    tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
    template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
    encoded_pairs = template.encode_multiturn(tokenizer, MESSAGES)
    prompt_str_1 = (
        "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>"
        "<|start_header_id|>assistant<|end_header_id|>\n\n"
    )
    answer_str_1 = "I am fine!<|eot_id|>"
    prompt_str_2 = (
        "<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>"
        "<|start_header_id|>assistant<|end_header_id|>\n\n"
    )
    answer_str_2 = "很高兴认识你!<|eot_id|>"
    _check_tokenization(
        tokenizer,
        (encoded_pairs[0][0], encoded_pairs[0][1], encoded_pairs[1][0], encoded_pairs[1][1]),
        (prompt_str_1, answer_str_1, prompt_str_2, answer_str_2),
    )


@pytest.mark.parametrize("use_fast", [True, False])
def test_jinja_template(use_fast: bool):
    tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
    ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
    template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
    tokenizer.chat_template = _get_jinja_template(template, tokenizer)  # llama3 template no replace
    assert tokenizer.chat_template != ref_tokenizer.chat_template
    assert tokenizer.apply_chat_template(MESSAGES) == ref_tokenizer.apply_chat_template(MESSAGES)


@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
def test_gemma_template():
    prompt_str = (
        "<bos><start_of_turn>user\nHow are you<end_of_turn>\n"
        "<start_of_turn>model\nI am fine!<end_of_turn>\n"
        "<start_of_turn>user\n你好<end_of_turn>\n"
        "<start_of_turn>model\n"
    )
    answer_str = "很高兴认识你!"
    _check_template("google/gemma-2-9b-it", "gemma", prompt_str, answer_str, extra_str="<end_of_turn>\n")


@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
def test_llama3_template():
    prompt_str = (
        "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>"
        "<|start_header_id|>assistant<|end_header_id|>\n\nI am fine!<|eot_id|>"
        "<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>"
        "<|start_header_id|>assistant<|end_header_id|>\n\n"
    )
    answer_str = "很高兴认识你!<|eot_id|>"
    _check_template("meta-llama/Meta-Llama-3-8B-Instruct", "llama3", prompt_str, answer_str)


def test_qwen_template():
    prompt_str = (
        "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
        "<|im_start|>user\nHow are you<|im_end|>\n"
        "<|im_start|>assistant\nI am fine!<|im_end|>\n"
        "<|im_start|>user\n你好<|im_end|>\n"
        "<|im_start|>assistant\n"
    )
    answer_str = "很高兴认识你!<|im_end|>"
    _check_template("Qwen/Qwen2-7B-Instruct", "qwen", prompt_str, answer_str, extra_str="\n")


@pytest.mark.xfail(reason="The fast tokenizer of Yi model is corrupted.")
def test_yi_template():
    prompt_str = (
        "<|im_start|>user\nHow are you<|im_end|>\n"
        "<|im_start|>assistant\nI am fine!<|im_end|>\n"
        "<|im_start|>user\n你好<|im_end|>\n"
        "<|im_start|>assistant\n"
    )
    answer_str = "很高兴认识你!<|im_end|>"
    _check_template("01-ai/Yi-1.5-6B-Chat", "yi", prompt_str, answer_str)