File size: 7,551 Bytes
bc55b34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import TYPE_CHECKING, List, Sequence
import pytest
from transformers import AutoTokenizer
from llamafactory.data import get_template_and_fix_tokenizer
from llamafactory.data.template import _get_jinja_template
from llamafactory.hparams import DataArguments
if TYPE_CHECKING:
from transformers import PreTrainedTokenizer
HF_TOKEN = os.environ.get("HF_TOKEN", None)
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
MESSAGES = [
{"role": "user", "content": "How are you"},
{"role": "assistant", "content": "I am fine!"},
{"role": "user", "content": "你好"},
{"role": "assistant", "content": "很高兴认识你!"},
]
def _check_tokenization(
tokenizer: "PreTrainedTokenizer", batch_input_ids: Sequence[Sequence[int]], batch_text: Sequence[str]
) -> None:
for input_ids, text in zip(batch_input_ids, batch_text):
assert input_ids == tokenizer.encode(text, add_special_tokens=False)
assert tokenizer.decode(input_ids) == text
def _check_single_template(
model_id: str, template_name: str, prompt_str: str, answer_str: str, extra_str: str, use_fast: bool
) -> List[str]:
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=use_fast, token=HF_TOKEN)
content_str = tokenizer.apply_chat_template(MESSAGES, tokenize=False)
content_ids = tokenizer.apply_chat_template(MESSAGES, tokenize=True)
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template=template_name))
prompt_ids, answer_ids = template.encode_oneturn(tokenizer, MESSAGES)
assert content_str == prompt_str + answer_str + extra_str
assert content_ids == prompt_ids + answer_ids + tokenizer.encode(extra_str, add_special_tokens=False)
_check_tokenization(tokenizer, (prompt_ids, answer_ids), (prompt_str, answer_str))
return content_ids
def _check_template(model_id: str, template_name: str, prompt_str: str, answer_str: str, extra_str: str = "") -> None:
"""
Checks template for both the slow tokenizer and the fast tokenizer.
Args:
model_id: the model id on hugging face hub.
template_name: the template name.
prompt_str: the string corresponding to the prompt part.
answer_str: the string corresponding to the answer part.
extra_str: the extra string in the jinja template of the original tokenizer.
"""
slow_ids = _check_single_template(model_id, template_name, prompt_str, answer_str, extra_str, use_fast=False)
fast_ids = _check_single_template(model_id, template_name, prompt_str, answer_str, extra_str, use_fast=True)
assert slow_ids == fast_ids
@pytest.mark.parametrize("use_fast", [True, False])
def test_encode_oneturn(use_fast: bool):
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
prompt_ids, answer_ids = template.encode_oneturn(tokenizer, MESSAGES)
prompt_str = (
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\nI am fine!<|eot_id|>"
"<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n"
)
answer_str = "很高兴认识你!<|eot_id|>"
_check_tokenization(tokenizer, (prompt_ids, answer_ids), (prompt_str, answer_str))
@pytest.mark.parametrize("use_fast", [True, False])
def test_encode_multiturn(use_fast: bool):
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
encoded_pairs = template.encode_multiturn(tokenizer, MESSAGES)
prompt_str_1 = (
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n"
)
answer_str_1 = "I am fine!<|eot_id|>"
prompt_str_2 = (
"<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n"
)
answer_str_2 = "很高兴认识你!<|eot_id|>"
_check_tokenization(
tokenizer,
(encoded_pairs[0][0], encoded_pairs[0][1], encoded_pairs[1][0], encoded_pairs[1][1]),
(prompt_str_1, answer_str_1, prompt_str_2, answer_str_2),
)
@pytest.mark.parametrize("use_fast", [True, False])
def test_jinja_template(use_fast: bool):
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
template = get_template_and_fix_tokenizer(tokenizer, DataArguments(template="llama3"))
tokenizer.chat_template = _get_jinja_template(template, tokenizer) # llama3 template no replace
assert tokenizer.chat_template != ref_tokenizer.chat_template
assert tokenizer.apply_chat_template(MESSAGES) == ref_tokenizer.apply_chat_template(MESSAGES)
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
def test_gemma_template():
prompt_str = (
"<bos><start_of_turn>user\nHow are you<end_of_turn>\n"
"<start_of_turn>model\nI am fine!<end_of_turn>\n"
"<start_of_turn>user\n你好<end_of_turn>\n"
"<start_of_turn>model\n"
)
answer_str = "很高兴认识你!"
_check_template("google/gemma-2-9b-it", "gemma", prompt_str, answer_str, extra_str="<end_of_turn>\n")
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
def test_llama3_template():
prompt_str = (
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\nI am fine!<|eot_id|>"
"<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n"
)
answer_str = "很高兴认识你!<|eot_id|>"
_check_template("meta-llama/Meta-Llama-3-8B-Instruct", "llama3", prompt_str, answer_str)
def test_qwen_template():
prompt_str = (
"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
"<|im_start|>user\nHow are you<|im_end|>\n"
"<|im_start|>assistant\nI am fine!<|im_end|>\n"
"<|im_start|>user\n你好<|im_end|>\n"
"<|im_start|>assistant\n"
)
answer_str = "很高兴认识你!<|im_end|>"
_check_template("Qwen/Qwen2-7B-Instruct", "qwen", prompt_str, answer_str, extra_str="\n")
@pytest.mark.xfail(reason="The fast tokenizer of Yi model is corrupted.")
def test_yi_template():
prompt_str = (
"<|im_start|>user\nHow are you<|im_end|>\n"
"<|im_start|>assistant\nI am fine!<|im_end|>\n"
"<|im_start|>user\n你好<|im_end|>\n"
"<|im_start|>assistant\n"
)
answer_str = "很高兴认识你!<|im_end|>"
_check_template("01-ai/Yi-1.5-6B-Chat", "yi", prompt_str, answer_str)
|