|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from functools import partial, wraps |
|
from types import MethodType |
|
from typing import TYPE_CHECKING, Any, Callable, Dict, Optional, Tuple, Union |
|
|
|
import torch |
|
|
|
from ...extras.constants import LAYERNORM_NAMES |
|
from ...extras.logging import get_logger |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import PreTrainedModel |
|
|
|
from ...hparams import ModelArguments |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def get_unsloth_gradient_checkpointing_func() -> Callable: |
|
class UnslothGradientCheckpointing(torch.autograd.Function): |
|
r""" |
|
Saves VRAM by smartly offloading to RAM. |
|
""" |
|
|
|
@staticmethod |
|
@torch.cuda.amp.custom_fwd |
|
def forward( |
|
ctx: "torch.autograd.Function", |
|
forward_function: "torch.Module", |
|
hidden_states: "torch.Tensor", |
|
*args: Union["torch.Tensor", Any], |
|
) -> "torch.Tensor": |
|
saved_hidden_states = hidden_states.to("cpu", non_blocking=True) |
|
with torch.no_grad(): |
|
output = forward_function(hidden_states, *args) |
|
|
|
ctx.save_for_backward(saved_hidden_states) |
|
ctx.forward_function = forward_function |
|
ctx.args = args |
|
return output |
|
|
|
@staticmethod |
|
@torch.cuda.amp.custom_bwd |
|
def backward(ctx: "torch.autograd.Function", grad_output: "torch.Tensor") -> "torch.Tensor": |
|
(hidden_states,) = ctx.saved_tensors |
|
hidden_states = hidden_states.to("cuda", non_blocking=True).detach() |
|
hidden_states.requires_grad_(True) |
|
with torch.enable_grad(): |
|
(output,) = ctx.forward_function(hidden_states, *ctx.args) |
|
|
|
torch.autograd.backward(output, grad_output) |
|
return (None, hidden_states.grad) + (None,) * len(ctx.args) |
|
|
|
return UnslothGradientCheckpointing.apply |
|
|
|
|
|
def get_custom_gradient_checkpointing_func(gradient_checkpointing_func: Callable) -> Callable: |
|
r""" |
|
Only applies gradient checkpointing to trainable layers. |
|
""" |
|
|
|
@wraps(gradient_checkpointing_func) |
|
def custom_gradient_checkpointing_func(func: Callable, *args: Union["torch.Tensor", Any], **kwargs): |
|
module: "torch.nn.Module" = func.__self__ |
|
|
|
if any(param.requires_grad for param in module.parameters()): |
|
for arg in args: |
|
if torch.is_tensor(arg) and torch.is_floating_point(arg): |
|
arg.requires_grad_(True) |
|
|
|
return gradient_checkpointing_func(func, *args, **kwargs) |
|
|
|
if hasattr(gradient_checkpointing_func, "__self__"): |
|
custom_gradient_checkpointing_func.__self__ = gradient_checkpointing_func.__self__ |
|
|
|
return custom_gradient_checkpointing_func |
|
|
|
|
|
def _gradient_checkpointing_enable( |
|
self: "PreTrainedModel", |
|
gradient_checkpointing_kwargs: Optional[Dict[str, Any]] = None, |
|
use_unsloth_gc: bool = False, |
|
) -> None: |
|
r""" |
|
Activates gradient checkpointing for the current model. |
|
|
|
Modification of the original method to enable gradient checkpointing for block-wise optimizer. |
|
""" |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
if not self.supports_gradient_checkpointing: |
|
raise ValueError("{} does not support gradient checkpointing.".format(self.__class__.__name__)) |
|
|
|
if gradient_checkpointing_kwargs is None: |
|
gradient_checkpointing_kwargs = {"use_reentrant": True} |
|
|
|
if use_unsloth_gc: |
|
gradient_checkpointing_func = get_unsloth_gradient_checkpointing_func() |
|
else: |
|
gradient_checkpointing_func = partial(checkpoint, **gradient_checkpointing_kwargs) |
|
|
|
gradient_checkpointing_func = get_custom_gradient_checkpointing_func(gradient_checkpointing_func) |
|
if "value" in inspect.signature(self._set_gradient_checkpointing).parameters: |
|
self.apply(partial(self._set_gradient_checkpointing, value=True)) |
|
self.enable_input_require_grads() |
|
logger.warning("You are using the old GC format, some features (e.g. BAdam) will be invalid.") |
|
else: |
|
self._set_gradient_checkpointing(enable=True, gradient_checkpointing_func=gradient_checkpointing_func) |
|
|
|
|
|
def _fp32_forward_post_hook( |
|
module: "torch.nn.Module", args: Tuple["torch.Tensor"], output: "torch.Tensor" |
|
) -> "torch.Tensor": |
|
return output.to(torch.float32) |
|
|
|
|
|
def prepare_model_for_training(model: "PreTrainedModel", model_args: "ModelArguments") -> None: |
|
r""" |
|
Includes: |
|
(1) cast the layernorm in fp32 |
|
(2) make output embedding layer require grads |
|
(3) add the upcasting of the lm_head in fp32 |
|
""" |
|
if model_args.upcast_layernorm: |
|
logger.info("Upcasting layernorm weights in float32.") |
|
for name, param in model.named_parameters(): |
|
if param.ndim == 1 and any(ln_name in name for ln_name in LAYERNORM_NAMES): |
|
param.data = param.data.to(torch.float32) |
|
|
|
if not model_args.disable_gradient_checkpointing: |
|
if not getattr(model, "supports_gradient_checkpointing", False): |
|
logger.warning("Current model does not support gradient checkpointing.") |
|
else: |
|
|
|
|
|
gradient_checkpointing_enable = partial( |
|
_gradient_checkpointing_enable, use_unsloth_gc=model_args.use_unsloth_gc |
|
) |
|
model.gradient_checkpointing_enable = MethodType(gradient_checkpointing_enable, model) |
|
model.gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": True}) |
|
setattr(model.config, "use_cache", False) |
|
logger.info("Gradient checkpointing enabled.") |
|
|
|
if model_args.upcast_lmhead_output: |
|
output_layer = model.get_output_embeddings() |
|
if isinstance(output_layer, torch.nn.Linear) and output_layer.weight.dtype != torch.float32: |
|
logger.info("Upcasting lm_head outputs in float32.") |
|
output_layer.register_forward_hook(_fp32_forward_post_hook) |
|
|