|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from typing import TYPE_CHECKING |
|
|
|
from ...extras.logging import get_logger |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import PretrainedConfig |
|
|
|
from ...hparams import ModelArguments |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def apply_liger_kernel( |
|
config: "PretrainedConfig", |
|
model_args: "ModelArguments", |
|
is_trainable: bool, |
|
require_logits: bool, |
|
) -> None: |
|
if not is_trainable or not model_args.enable_liger_kernel: |
|
return |
|
|
|
model_type = getattr(config, "model_type", None) |
|
if model_type == "gemma": |
|
from liger_kernel.transformers import apply_liger_kernel_to_gemma as apply_liger_kernel |
|
elif model_type == "gemma2": |
|
from liger_kernel.transformers import apply_liger_kernel_to_gemma2 as apply_liger_kernel |
|
elif model_type == "llama": |
|
from liger_kernel.transformers import apply_liger_kernel_to_llama as apply_liger_kernel |
|
elif model_type == "mistral": |
|
from liger_kernel.transformers import apply_liger_kernel_to_mistral as apply_liger_kernel |
|
elif model_type == "mixtral": |
|
from liger_kernel.transformers import apply_liger_kernel_to_mixtral as apply_liger_kernel |
|
elif model_type == "phi3": |
|
from liger_kernel.transformers import apply_liger_kernel_to_phi3 as apply_liger_kernel |
|
elif model_type == "qwen2": |
|
from liger_kernel.transformers import apply_liger_kernel_to_qwen2 as apply_liger_kernel |
|
elif model_type == "qwen2_vl": |
|
from liger_kernel.transformers import apply_liger_kernel_to_qwen2_vl as apply_liger_kernel |
|
else: |
|
logger.warning("Current model does not support liger kernel.") |
|
return |
|
|
|
if require_logits and "fused_linear_cross_entropy" in inspect.signature(apply_liger_kernel).parameters: |
|
logger.info("Current training stage does not support chunked cross entropy.") |
|
kwargs = {"fused_linear_cross_entropy": False} |
|
else: |
|
kwargs = {} |
|
|
|
apply_liger_kernel(**kwargs) |
|
logger.info("Liger kernel has been applied to the model.") |
|
|