|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import TYPE_CHECKING, Dict, Optional |
|
|
|
import numpy as np |
|
import torch |
|
from transformers.utils import is_jieba_available, is_nltk_available |
|
|
|
from ...extras.constants import IGNORE_INDEX |
|
from ...extras.misc import numpify |
|
from ...extras.packages import is_rouge_available |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import EvalPrediction, PreTrainedTokenizer |
|
|
|
|
|
if is_jieba_available(): |
|
import jieba |
|
|
|
|
|
if is_nltk_available(): |
|
from nltk.translate.bleu_score import SmoothingFunction, sentence_bleu |
|
|
|
|
|
if is_rouge_available(): |
|
from rouge_chinese import Rouge |
|
|
|
|
|
def eval_logit_processor(logits: "torch.Tensor", labels: "torch.Tensor") -> "torch.Tensor": |
|
r""" |
|
Computes the token with the largest likelihood to reduce memory footprint. |
|
""" |
|
if isinstance(logits, (list, tuple)): |
|
if logits[0].dim() == 3: |
|
logits = logits[0] |
|
else: |
|
logits = logits[1] |
|
|
|
if logits.dim() != 3: |
|
raise ValueError("Cannot process the logits.") |
|
|
|
return torch.argmax(logits, dim=-1) |
|
|
|
|
|
@dataclass |
|
class ComputeAccuracy: |
|
r""" |
|
Computes accuracy and supports `batch_eval_metrics`. |
|
""" |
|
|
|
def _dump(self) -> Optional[Dict[str, float]]: |
|
result = None |
|
if hasattr(self, "score_dict"): |
|
result = {k: float(np.mean(v)) for k, v in self.score_dict.items()} |
|
|
|
self.score_dict = {"accuracy": []} |
|
return result |
|
|
|
def __post_init__(self): |
|
self._dump() |
|
|
|
def __call__(self, eval_preds: "EvalPrediction", compute_result: bool = True) -> Optional[Dict[str, float]]: |
|
preds, labels = numpify(eval_preds.predictions), numpify(eval_preds.label_ids) |
|
for i in range(len(preds)): |
|
pred, label = preds[i, :-1], labels[i, 1:] |
|
label_mask = label != IGNORE_INDEX |
|
self.score_dict["accuracy"].append(np.mean(pred[label_mask] == label[label_mask])) |
|
|
|
if compute_result: |
|
return self._dump() |
|
|
|
|
|
@dataclass |
|
class ComputeSimilarity: |
|
r""" |
|
Computes text similarity scores and supports `batch_eval_metrics`. |
|
|
|
Wraps the tokenizer into metric functions, used in CustomSeq2SeqTrainer. |
|
""" |
|
|
|
tokenizer: "PreTrainedTokenizer" |
|
|
|
def _dump(self) -> Optional[Dict[str, float]]: |
|
result = None |
|
if hasattr(self, "score_dict"): |
|
result = {k: float(np.mean(v)) for k, v in self.score_dict.items()} |
|
|
|
self.score_dict = {"rouge-1": [], "rouge-2": [], "rouge-l": [], "bleu-4": []} |
|
return result |
|
|
|
def __post_init__(self): |
|
self._dump() |
|
|
|
def __call__(self, eval_preds: "EvalPrediction", compute_result: bool = True) -> Optional[Dict[str, float]]: |
|
preds, labels = numpify(eval_preds.predictions), numpify(eval_preds.label_ids) |
|
|
|
preds = np.where(preds != IGNORE_INDEX, preds, self.tokenizer.pad_token_id) |
|
labels = np.where(labels != IGNORE_INDEX, labels, self.tokenizer.pad_token_id) |
|
|
|
decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True) |
|
decoded_labels = self.tokenizer.batch_decode(labels, skip_special_tokens=True) |
|
|
|
for pred, label in zip(decoded_preds, decoded_labels): |
|
hypothesis = list(jieba.cut(pred)) |
|
reference = list(jieba.cut(label)) |
|
|
|
if len(" ".join(hypothesis).split()) == 0 or len(" ".join(reference).split()) == 0: |
|
result = {"rouge-1": {"f": 0.0}, "rouge-2": {"f": 0.0}, "rouge-l": {"f": 0.0}} |
|
else: |
|
rouge = Rouge() |
|
scores = rouge.get_scores(" ".join(hypothesis), " ".join(reference)) |
|
result = scores[0] |
|
|
|
for k, v in result.items(): |
|
self.score_dict[k].append(round(v["f"] * 100, 4)) |
|
|
|
bleu_score = sentence_bleu([list(label)], list(pred), smoothing_function=SmoothingFunction().method3) |
|
self.score_dict["bleu-4"].append(round(bleu_score * 100, 4)) |
|
|
|
if compute_result: |
|
return self._dump() |
|
|