# Copyright 2024 HuggingFace Inc. and the LlamaFactory team. # # This code is inspired by the HuggingFace's Transformers library. # https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/models/llava/modeling_llava.py # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, List, Sequence, Set, Tuple, Union import torch import transformers.models from transformers.activations import ACT2FN from transformers.utils import logging from ...extras.logging import get_logger if TYPE_CHECKING: from transformers import LlavaConfig, PretrainedConfig, PreTrainedModel from ...hparams import FinetuningArguments, ModelArguments logger = get_logger(__name__) transformers_logger = logging.get_logger(__name__) class LlavaMultiModalProjectorForYiVL(torch.nn.Module): def __init__(self, config: "LlavaConfig") -> None: super().__init__() self.config = config if config is None: return self.linear_1 = torch.nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True) self.linear_2 = torch.nn.LayerNorm(config.text_config.hidden_size, bias=True) self.linear_3 = torch.nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True) self.linear_4 = torch.nn.LayerNorm(config.text_config.hidden_size, bias=True) self.act = ACT2FN[config.projector_hidden_act] def forward(self, image_features: "torch.Tensor") -> "torch.Tensor": hidden_states = self.linear_1(image_features) hidden_states = self.linear_2(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.linear_3(hidden_states) hidden_states = self.linear_4(hidden_states) if hidden_states.dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.linear_1.weight.dtype transformers_logger.warning_once("The hidden states seems to be silently casted in float32.") hidden_states = hidden_states.to(target_dtype) return hidden_states class LlavaMultiModalProjectorForYiVLForVLLM(LlavaMultiModalProjectorForYiVL): def __init__(self, vision_hidden_size: int, text_hidden_size: int, projector_hidden_act: str) -> None: super().__init__(config=None) self.linear_1 = torch.nn.Linear(vision_hidden_size, text_hidden_size, bias=True) self.linear_2 = torch.nn.LayerNorm(text_hidden_size, bias=True) self.linear_3 = torch.nn.Linear(text_hidden_size, text_hidden_size, bias=True) self.linear_4 = torch.nn.LayerNorm(text_hidden_size, bias=True) self.act = ACT2FN[projector_hidden_act] def autocast_projector_dtype(model: "PreTrainedModel", model_args: "ModelArguments") -> None: r""" Casts projector output to half precision for fine-tuning quantized VLMs. """ def _mm_projector_forward_post_hook( module: "torch.nn.Module", args: Tuple["torch.Tensor"], output: "torch.Tensor" ) -> "torch.Tensor": return output.to(model_args.compute_dtype) if getattr(model, "quantization_method", None): model_type = getattr(model.config, "model_type", None) if model_type in ["llava", "llava_next", "llava_next_video", "paligemma", "video_llava"]: mm_projector: "torch.nn.Module" = getattr(model, "multi_modal_projector") elif model_type == "qwen2_vl": mm_projector: "torch.nn.Module" = getattr(getattr(model, "visual"), "merger") else: return logger.info("Casting multimodal projector outputs in {}.".format(model_args.compute_dtype)) mm_projector.register_forward_hook(_mm_projector_forward_post_hook) def configure_visual_model(config: "PretrainedConfig") -> None: r""" Patches VLMs before loading them. """ model_type = getattr(config, "model_type", None) if model_type in [ "llava", "llava_next", "llava_next_video", "paligemma", "video_llava", ]: # required for ds zero3 and valuehead models setattr(config, "hidden_size", getattr(config.text_config, "hidden_size", None)) if getattr(config, "is_yi_vl_derived_model", None): logger.info("Detected Yi-VL model, applying projector patch.") transformers.models.llava.modeling_llava.LlavaMultiModalProjector = LlavaMultiModalProjectorForYiVL def get_forbidden_modules(config: "PretrainedConfig", finetuning_args: "FinetuningArguments") -> Set[str]: r""" Freezes vision tower and language model for VLM full/freeze tuning. """ model_type = getattr(config, "model_type", None) forbidden_modules = set() if model_type in ["llava", "llava_next", "llava_next_video", "paligemma", "video_llava"]: if finetuning_args.freeze_vision_tower: forbidden_modules.add("vision_tower") if finetuning_args.train_mm_proj_only: forbidden_modules.add("language_model") elif model_type == "qwen2_vl": if finetuning_args.freeze_vision_tower: forbidden_modules.add("visual") if finetuning_args.train_mm_proj_only: raise ValueError("Qwen2-VL models do not support `train_mm_proj_only`.") return forbidden_modules def get_image_seqlen(config: "PretrainedConfig") -> int: r""" Computes the number of special tokens per image. """ model_type = getattr(config, "model_type", None) if model_type == "llava": image_seqlen = (config.vision_config.image_size // config.vision_config.patch_size) ** 2 if getattr(config, "vision_feature_select_strategy", "default") == "full": # add [CLS] token image_seqlen += 1 elif model_type == "paligemma": image_seqlen = config.vision_config.num_image_tokens else: image_seqlen = -1 return image_seqlen def get_patch_size(config: "PretrainedConfig") -> int: r""" Computes the patch size of the vit. """ patch_size = getattr(config.vision_config, "patch_size", -1) return patch_size def get_vision_feature_select_strategy(config: "PretrainedConfig") -> int: r""" Get the vision_feature_select_strategy. """ vision_feature_select_strategy = getattr(config, "vision_feature_select_strategy", "default") return vision_feature_select_strategy def patch_target_modules( config: "PretrainedConfig", finetuning_args: "FinetuningArguments", target_modules: Sequence[str] ) -> Union[str, List[str]]: r""" Freezes vision tower for VLM LoRA tuning. """ model_type = getattr(config, "model_type", None) if finetuning_args.freeze_vision_tower: if model_type in ["llava", "llava_next", "llava_next_video", "paligemma", "video_llava"]: return "^(?!.*vision_tower).*(?:{}).*".format("|".join(target_modules)) elif model_type == "qwen2_vl": return "^(?!.*visual).*(?:{}).*".format("|".join(target_modules)) else: return target_modules else: if model_type == "qwen2_vl": return "^(?!.*patch_embed).*(?:{}).*".format("|".join(target_modules)) else: return target_modules