File size: 5,011 Bytes
e47f917
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
library_name: transformers
license: apache-2.0
base_model: facebook/detr-resnet-50-dc5
tags:
- generated_from_trainer
model-index:
- name: facebook/detr-resnet-50-dc5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# facebook/detr-resnet-50-dc5

This model is a fine-tuned version of [facebook/detr-resnet-50-dc5](https://huggingface.co/facebook/detr-resnet-50-dc5) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7887
- Map: 0.55
- Map 50: 0.6825
- Map 75: 0.5932
- Map Small: 0.0
- Map Medium: 0.5352
- Map Large: 0.7531
- Mar 1: 0.1882
- Mar 10: 0.6735
- Mar 100: 0.7588
- Mar Small: 0.0
- Mar Medium: 0.7158
- Mar Large: 0.9385
- Map Object: -1.0
- Mar 100 Object: -1.0
- Map Balloon: 0.55
- Mar 100 Balloon: 0.7588

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 125
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Map    | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1  | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Object | Mar 100 Object | Map Balloon | Mar 100 Balloon |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:----------:|:--------------:|:-----------:|:---------------:|
| 2.1236        | 0.7692 | 10   | 1.3396          | 0.0768 | 0.1002 | 0.0897 | 0.0       | 0.0966     | 0.1387    | 0.0765 | 0.3735 | 0.5647  | 0.0       | 0.3789     | 0.9231    | -1.0       | -1.0           | 0.0768      | 0.5647          |
| 1.5088        | 1.5385 | 20   | 1.2730          | 0.1472 | 0.1875 | 0.1691 | 0.0       | 0.1297     | 0.2723    | 0.1059 | 0.3647 | 0.6618  | 0.0       | 0.5684     | 0.9       | -1.0       | -1.0           | 0.1472      | 0.6618          |
| 1.3182        | 2.3077 | 30   | 1.2273          | 0.1816 | 0.2322 | 0.1918 | 0.0       | 0.2368     | 0.3423    | 0.1088 | 0.3941 | 0.6647  | 0.0       | 0.6053     | 0.8538    | -1.0       | -1.0           | 0.1816      | 0.6647          |
| 1.365         | 3.0769 | 40   | 1.0452          | 0.2476 | 0.3019 | 0.2823 | 0.0       | 0.3035     | 0.4146    | 0.1118 | 0.4882 | 0.7559  | 0.0       | 0.7158     | 0.9308    | -1.0       | -1.0           | 0.2476      | 0.7559          |
| 1.2013        | 3.8462 | 50   | 0.9825          | 0.3006 | 0.3891 | 0.3233 | 0.0       | 0.3747     | 0.496     | 0.1324 | 0.5265 | 0.7324  | 0.0       | 0.6737     | 0.9308    | -1.0       | -1.0           | 0.3006      | 0.7324          |
| 1.3605        | 4.6154 | 60   | 0.9307          | 0.3655 | 0.4809 | 0.4024 | 0.0       | 0.3706     | 0.5922    | 0.1324 | 0.5471 | 0.7294  | 0.0       | 0.6684     | 0.9308    | -1.0       | -1.0           | 0.3655      | 0.7294          |
| 1.0117        | 5.3846 | 70   | 0.8867          | 0.3834 | 0.5044 | 0.4222 | 0.0       | 0.4086     | 0.5963    | 0.1294 | 0.5882 | 0.7324  | 0.0       | 0.6737     | 0.9308    | -1.0       | -1.0           | 0.3834      | 0.7324          |
| 1.1224        | 6.1538 | 80   | 0.8413          | 0.478  | 0.6138 | 0.5427 | 0.0       | 0.472      | 0.7053    | 0.1676 | 0.6265 | 0.7529  | 0.0       | 0.7053     | 0.9385    | -1.0       | -1.0           | 0.478       | 0.7529          |
| 1.0109        | 6.9231 | 90   | 0.8210          | 0.5281 | 0.6515 | 0.5817 | 0.0       | 0.5391     | 0.7497    | 0.1559 | 0.6441 | 0.7735  | 0.0       | 0.7316     | 0.9538    | -1.0       | -1.0           | 0.5281      | 0.7735          |
| 1.0771        | 7.6923 | 100  | 0.8153          | 0.5506 | 0.6859 | 0.604  | 0.0       | 0.5638     | 0.7373    | 0.1794 | 0.6618 | 0.7676  | 0.0       | 0.7263     | 0.9462    | -1.0       | -1.0           | 0.5506      | 0.7676          |
| 0.9122        | 8.4615 | 110  | 0.7948          | 0.5551 | 0.6839 | 0.6097 | 0.0       | 0.5603     | 0.7503    | 0.1853 | 0.6618 | 0.7824  | 0.0       | 0.7526     | 0.9462    | -1.0       | -1.0           | 0.5551      | 0.7824          |
| 0.9918        | 9.2308 | 120  | 0.7887          | 0.55   | 0.6825 | 0.5932 | 0.0       | 0.5352     | 0.7531    | 0.1882 | 0.6735 | 0.7588  | 0.0       | 0.7158     | 0.9385    | -1.0       | -1.0           | 0.55        | 0.7588          |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.20.0