Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -3.27 +/- 0.81
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:697d52f8e7fdcbf2577b3cdfd763fe003ed8af2486d38fd4154a04748841d7ab
|
3 |
+
size 108075
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc7061736d0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fc70616eb00>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1685476686243184822,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAxRzxPhXSOr0RxSE/xRzxPhXSOr0RxSE/xRzxPhXSOr0RxSE/xRzxPhXSOr0RxSE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/7I6Py/WJT/cCg2/w4hpPxR6yT/p1Pk9Ag0mvyf6q79EGOu+4VnOv7q+dD9F7De+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADFHPE+FdI6vRHFIT/2pis8UMgTO63VkzzFHPE+FdI6vRHFIT/2pis8UMgTO63VkzzFHPE+FdI6vRHFIT/2pis8UMgTO63VkzzFHPE+FdI6vRHFIT/2pis8UMgTO63VkzyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.47092262 -0.04561051 0.63191324]\n [ 0.47092262 -0.04561051 0.63191324]\n [ 0.47092262 -0.04561051 0.63191324]\n [ 0.47092262 -0.04561051 0.63191324]]",
|
38 |
+
"desired_goal": "[[ 0.72929376 0.64779943 -0.55094695]\n [ 0.91224307 1.574038 0.12198813]\n [-0.648636 -1.3435715 -0.4591695 ]\n [-1.6121179 0.95603526 -0.17961223]]",
|
39 |
+
"observation": "[[ 0.47092262 -0.04561051 0.63191324 0.01047682 0.00225498 0.01804622]\n [ 0.47092262 -0.04561051 0.63191324 0.01047682 0.00225498 0.01804622]\n [ 0.47092262 -0.04561051 0.63191324 0.01047682 0.00225498 0.01804622]\n [ 0.47092262 -0.04561051 0.63191324 0.01047682 0.00225498 0.01804622]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMSPBvWmzJj2kkLQ9gbQDvQcbVr1SWpg96ianvQH5pDwNS2w+hsaZvdGQhz2gV8U9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.0943054 0.04069844 0.08816651]\n [-0.03215456 -0.05227187 0.07439102]\n [-0.08161719 0.02013827 0.23075505]\n [-0.07508568 0.06619418 0.09635854]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2INJ8fFJEMCUhpRSlIwBbJRLMowBdJRHQKnHI8HObAl1fZQoaAZoCWgPQwhdcAZ/vzgUwJSGlFKUaBVLMmgWR0CpxuAF5fMOdX2UKGgGaAloD0MIoG8LluqCBcCUhpRSlGgVSzJoFkdAqcacJv5xi3V9lChoBmgJaA9DCFOxMa8jTg7AlIaUUpRoFUsyaBZHQKnGV1q33Ht1fZQoaAZoCWgPQwhxk1FlGBcJwJSGlFKUaBVLMmgWR0CpyBBQFcIJdX2UKGgGaAloD0MIEK6AQj29C8CUhpRSlGgVSzJoFkdAqcfMgpz90nV9lChoBmgJaA9DCGU08nnFswDAlIaUUpRoFUsyaBZHQKnHiKO1fE51fZQoaAZoCWgPQwipL0s7NZcLwJSGlFKUaBVLMmgWR0Cpx0O5avA5dX2UKGgGaAloD0MI7fFCOjzECcCUhpRSlGgVSzJoFkdAqckDbpNbknV9lChoBmgJaA9DCCHM7V7uQxDAlIaUUpRoFUsyaBZHQKnIv6/IsAh1fZQoaAZoCWgPQwhjm1Q01t4MwJSGlFKUaBVLMmgWR0CpyHvbfxc3dX2UKGgGaAloD0MImwKZnUUvCcCUhpRSlGgVSzJoFkdAqcg3NgSey3V9lChoBmgJaA9DCBoYeVkTawXAlIaUUpRoFUsyaBZHQKnJ9KNAC4l1fZQoaAZoCWgPQwj8AKQ2cXIKwJSGlFKUaBVLMmgWR0CpybDiwSrYdX2UKGgGaAloD0MIL90kBoEVDcCUhpRSlGgVSzJoFkdAqcltCw8nu3V9lChoBmgJaA9DCA2NJ4I4rwzAlIaUUpRoFUsyaBZHQKnJKCo0hvB1fZQoaAZoCWgPQwhD5PT1fJ0QwJSGlFKUaBVLMmgWR0CpyuVOKwY+dX2UKGgGaAloD0MIWg9fJoogE8CUhpRSlGgVSzJoFkdAqcqhf4REnnV9lChoBmgJaA9DCLMngc05WAXAlIaUUpRoFUsyaBZHQKnKXZYgaFV1fZQoaAZoCWgPQwgUP8bctaQCwJSGlFKUaBVLMmgWR0CpyhizC1qndX2UKGgGaAloD0MIniPyXUr9AsCUhpRSlGgVSzJoFkdAqcvZmI0qIHV9lChoBmgJaA9DCB4bgXhdrxHAlIaUUpRoFUsyaBZHQKnLldBSk0t1fZQoaAZoCWgPQwiu1R72QuEIwJSGlFKUaBVLMmgWR0Cpy1H27FsIdX2UKGgGaAloD0MII/Qz9boFCMCUhpRSlGgVSzJoFkdAqcsNO6/Zd3V9lChoBmgJaA9DCOfhBKbTChTAlIaUUpRoFUsyaBZHQKnMyMzdk8R1fZQoaAZoCWgPQwgfoPtyZhsPwJSGlFKUaBVLMmgWR0CpzIUWuX/pdX2UKGgGaAloD0MIbJc2HJamB8CUhpRSlGgVSzJoFkdAqcxBRKpT/HV9lChoBmgJaA9DCP/QzJNrag3AlIaUUpRoFUsyaBZHQKnL/GLDQ7d1fZQoaAZoCWgPQwgcB14td+YDwJSGlFKUaBVLMmgWR0Cpzbt6PbPAdX2UKGgGaAloD0MI5Pih0oiZC8CUhpRSlGgVSzJoFkdAqc13vBrN4nV9lChoBmgJaA9DCPJ8BtSbsRHAlIaUUpRoFUsyaBZHQKnNM9g4Otp1fZQoaAZoCWgPQwhTCU/o9UcFwJSGlFKUaBVLMmgWR0CpzO7xNIsidX2UKGgGaAloD0MIOJ7PgHpjEcCUhpRSlGgVSzJoFkdAqc7bUPQOWnV9lChoBmgJaA9DCPiqlQm/NAfAlIaUUpRoFUsyaBZHQKnOmNCJGfB1fZQoaAZoCWgPQwjtKw/SU0QLwJSGlFKUaBVLMmgWR0CpzlWf9P1tdX2UKGgGaAloD0MIi4nNx7UBFcCUhpRSlGgVSzJoFkdAqc4RXZGrj3V9lChoBmgJaA9DCES+S6lL5gXAlIaUUpRoFUsyaBZHQKnQZocrAgx1fZQoaAZoCWgPQwg3T3XIzTAJwJSGlFKUaBVLMmgWR0Cp0CNq59VndX2UKGgGaAloD0MIDMhe7/54DcCUhpRSlGgVSzJoFkdAqc/gJJGvwHV9lChoBmgJaA9DCGTll8EY0QrAlIaUUpRoFUsyaBZHQKnPm+bExZd1fZQoaAZoCWgPQwjJBWfw90sGwJSGlFKUaBVLMmgWR0Cp0fFoL5RCdX2UKGgGaAloD0MIlYCYhAtJEsCUhpRSlGgVSzJoFkdAqdGubG3nZHV9lChoBmgJaA9DCMEdqFMevQzAlIaUUpRoFUsyaBZHQKnRa0elsP91fZQoaAZoCWgPQwh9dsB1xSwPwJSGlFKUaBVLMmgWR0Cp0ScxKxs3dX2UKGgGaAloD0MIzPCfbqCAEMCUhpRSlGgVSzJoFkdAqdOSPZIxxnV9lChoBmgJaA9DCJkQc0nVdgjAlIaUUpRoFUsyaBZHQKnTT5SFXaJ1fZQoaAZoCWgPQwhO0vwxrS0MwJSGlFKUaBVLMmgWR0Cp0ww4jrzHdX2UKGgGaAloD0MI/DbEeM1rEMCUhpRSlGgVSzJoFkdAqdLH7cfvF3V9lChoBmgJaA9DCI5Yi08BkBDAlIaUUpRoFUsyaBZHQKnVL+ee4Cp1fZQoaAZoCWgPQwgllL4Qcv4NwJSGlFKUaBVLMmgWR0Cp1OzrmhdudX2UKGgGaAloD0MIh1ClZg80DMCUhpRSlGgVSzJoFkdAqdSp5VwPy3V9lChoBmgJaA9DCJxrmKHx5AbAlIaUUpRoFUsyaBZHQKnUZj5sTFl1fZQoaAZoCWgPQwix3NJqSNwOwJSGlFKUaBVLMmgWR0Cp1tTGgi/xdX2UKGgGaAloD0MIkSv1LAglBsCUhpRSlGgVSzJoFkdAqdaR06o2oHV9lChoBmgJaA9DCGGL3T6rrArAlIaUUpRoFUsyaBZHQKnWTsTnJT51fZQoaAZoCWgPQwibdFsiF7wUwJSGlFKUaBVLMmgWR0Cp1gqfWcz7dX2UKGgGaAloD0MIDi2yne/HDMCUhpRSlGgVSzJoFkdAqdhovSMLnnV9lChoBmgJaA9DCA3DR8SUaAfAlIaUUpRoFUsyaBZHQKnYJaufVZt1fZQoaAZoCWgPQwhCzvv/ODEUwJSGlFKUaBVLMmgWR0Cp1+M0xdpqdX2UKGgGaAloD0MIJSTSNv7kC8CUhpRSlGgVSzJoFkdAqdee8RL9M3V9lChoBmgJaA9DCATI0LGDagTAlIaUUpRoFUsyaBZHQKnaFxc3VCp1fZQoaAZoCWgPQwgawFsgQTEQwJSGlFKUaBVLMmgWR0Cp2dQHqu8sdX2UKGgGaAloD0MIUFH1K52PBMCUhpRSlGgVSzJoFkdAqdmRVuJk5XV9lChoBmgJaA9DCPhu88ZJURPAlIaUUpRoFUsyaBZHQKnZTZ0Syt51fZQoaAZoCWgPQwiZDTLJyHkNwJSGlFKUaBVLMmgWR0Cp29ISL61tdX2UKGgGaAloD0MIwM3ixcJwBcCUhpRSlGgVSzJoFkdAqduPzBhx53V9lChoBmgJaA9DCPsgy4KJPxHAlIaUUpRoFUsyaBZHQKnbTMINVip1fZQoaAZoCWgPQwhgkPRpFX0KwJSGlFKUaBVLMmgWR0Cp2wiL/CIldX2UKGgGaAloD0MIbeS6KeU1C8CUhpRSlGgVSzJoFkdAqd1UiOearnV9lChoBmgJaA9DCFq9w+3QsAzAlIaUUpRoFUsyaBZHQKndEWAPNFB1fZQoaAZoCWgPQwiYvtcQHNcQwJSGlFKUaBVLMmgWR0Cp3M2lEZzgdX2UKGgGaAloD0MI740hADiWBcCUhpRSlGgVSzJoFkdAqdyJDw6QvHV9lChoBmgJaA9DCP2iBP2F/gfAlIaUUpRoFUsyaBZHQKneUSTyJ9B1fZQoaAZoCWgPQwgd6KG2DUMFwJSGlFKUaBVLMmgWR0Cp3g1sUIszdX2UKGgGaAloD0MIx5v8Fp1MAcCUhpRSlGgVSzJoFkdAqd3J1Ng0CXV9lChoBmgJaA9DCHQLXYlAlQbAlIaUUpRoFUsyaBZHQKndhQqqfe11fZQoaAZoCWgPQwjVPEfku5QDwJSGlFKUaBVLMmgWR0Cp31I7FKkEdX2UKGgGaAloD0MISWO0jqpGDsCUhpRSlGgVSzJoFkdAqd8Oy3Td+HV9lChoBmgJaA9DCMx/SL99/QvAlIaUUpRoFUsyaBZHQKneyvfTCtR1fZQoaAZoCWgPQwgk7UYf84EMwJSGlFKUaBVLMmgWR0Cp3oYcm0E6dX2UKGgGaAloD0MI0QSKWMTwCcCUhpRSlGgVSzJoFkdAqeBHbfxc3XV9lChoBmgJaA9DCCe/RSdLbRDAlIaUUpRoFUsyaBZHQKngA619fC11fZQoaAZoCWgPQwj5hsJn6wAJwJSGlFKUaBVLMmgWR0Cp37//vOQhdX2UKGgGaAloD0MIz2dAvRnlFsCUhpRSlGgVSzJoFkdAqd97E1l5GHV9lChoBmgJaA9DCAywj05dWRDAlIaUUpRoFUsyaBZHQKnhNEXLvCx1fZQoaAZoCWgPQwj8VBUaiMULwJSGlFKUaBVLMmgWR0Cp4PCcoYvWdX2UKGgGaAloD0MIc5zbhHslCcCUhpRSlGgVSzJoFkdAqeCsvIwM6XV9lChoBmgJaA9DCEEpWrkXGAPAlIaUUpRoFUsyaBZHQKngZ/b0voN1fZQoaAZoCWgPQwgDXmbYKOsLwJSGlFKUaBVLMmgWR0Cp4iK8tf5UdX2UKGgGaAloD0MIN091yM3wBMCUhpRSlGgVSzJoFkdAqeHfJT2nKnV9lChoBmgJaA9DCKg5eZEJ2AvAlIaUUpRoFUsyaBZHQKnhmyPdVNp1fZQoaAZoCWgPQwgGobyPoxkTwJSGlFKUaBVLMmgWR0Cp4VZOBUaRdX2UKGgGaAloD0MIj/6Xa9FyEcCUhpRSlGgVSzJoFkdAqeMRZjhDPXV9lChoBmgJaA9DCGgFhqxu9Q3AlIaUUpRoFUsyaBZHQKnizbA1vVF1fZQoaAZoCWgPQwgkKH6MuWsOwJSGlFKUaBVLMmgWR0Cp4onNorWidX2UKGgGaAloD0MIuCHGa15VCMCUhpRSlGgVSzJoFkdAqeJFNWU8m3V9lChoBmgJaA9DCMk6HF2l+wjAlIaUUpRoFUsyaBZHQKnkAnP3SKF1fZQoaAZoCWgPQwiHbCBdbNoRwJSGlFKUaBVLMmgWR0Cp476q0dBCdX2UKGgGaAloD0MIodl1b0VyEMCUhpRSlGgVSzJoFkdAqeN6uB+WnnV9lChoBmgJaA9DCAhVavZAKw7AlIaUUpRoFUsyaBZHQKnjNcHGCI11ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4794b2398666a336e1385fd775559c5627b801c4faeeb63db19f8e9f315b0a6
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a80da8bfd846b5bd1ae9489478aff6970aae5b13719e3b519fa880c630a95f8d
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc7061736d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc70616eb00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685476686243184822, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAxRzxPhXSOr0RxSE/xRzxPhXSOr0RxSE/xRzxPhXSOr0RxSE/xRzxPhXSOr0RxSE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/7I6Py/WJT/cCg2/w4hpPxR6yT/p1Pk9Ag0mvyf6q79EGOu+4VnOv7q+dD9F7De+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADFHPE+FdI6vRHFIT/2pis8UMgTO63VkzzFHPE+FdI6vRHFIT/2pis8UMgTO63VkzzFHPE+FdI6vRHFIT/2pis8UMgTO63VkzzFHPE+FdI6vRHFIT/2pis8UMgTO63VkzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.47092262 -0.04561051 0.63191324]\n [ 0.47092262 -0.04561051 0.63191324]\n [ 0.47092262 -0.04561051 0.63191324]\n [ 0.47092262 -0.04561051 0.63191324]]", "desired_goal": "[[ 0.72929376 0.64779943 -0.55094695]\n [ 0.91224307 1.574038 0.12198813]\n [-0.648636 -1.3435715 -0.4591695 ]\n [-1.6121179 0.95603526 -0.17961223]]", "observation": "[[ 0.47092262 -0.04561051 0.63191324 0.01047682 0.00225498 0.01804622]\n [ 0.47092262 -0.04561051 0.63191324 0.01047682 0.00225498 0.01804622]\n [ 0.47092262 -0.04561051 0.63191324 0.01047682 0.00225498 0.01804622]\n [ 0.47092262 -0.04561051 0.63191324 0.01047682 0.00225498 0.01804622]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMSPBvWmzJj2kkLQ9gbQDvQcbVr1SWpg96ianvQH5pDwNS2w+hsaZvdGQhz2gV8U9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.0943054 0.04069844 0.08816651]\n [-0.03215456 -0.05227187 0.07439102]\n [-0.08161719 0.02013827 0.23075505]\n [-0.07508568 0.06619418 0.09635854]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2INJ8fFJEMCUhpRSlIwBbJRLMowBdJRHQKnHI8HObAl1fZQoaAZoCWgPQwhdcAZ/vzgUwJSGlFKUaBVLMmgWR0CpxuAF5fMOdX2UKGgGaAloD0MIoG8LluqCBcCUhpRSlGgVSzJoFkdAqcacJv5xi3V9lChoBmgJaA9DCFOxMa8jTg7AlIaUUpRoFUsyaBZHQKnGV1q33Ht1fZQoaAZoCWgPQwhxk1FlGBcJwJSGlFKUaBVLMmgWR0CpyBBQFcIJdX2UKGgGaAloD0MIEK6AQj29C8CUhpRSlGgVSzJoFkdAqcfMgpz90nV9lChoBmgJaA9DCGU08nnFswDAlIaUUpRoFUsyaBZHQKnHiKO1fE51fZQoaAZoCWgPQwipL0s7NZcLwJSGlFKUaBVLMmgWR0Cpx0O5avA5dX2UKGgGaAloD0MI7fFCOjzECcCUhpRSlGgVSzJoFkdAqckDbpNbknV9lChoBmgJaA9DCCHM7V7uQxDAlIaUUpRoFUsyaBZHQKnIv6/IsAh1fZQoaAZoCWgPQwhjm1Q01t4MwJSGlFKUaBVLMmgWR0CpyHvbfxc3dX2UKGgGaAloD0MImwKZnUUvCcCUhpRSlGgVSzJoFkdAqcg3NgSey3V9lChoBmgJaA9DCBoYeVkTawXAlIaUUpRoFUsyaBZHQKnJ9KNAC4l1fZQoaAZoCWgPQwj8AKQ2cXIKwJSGlFKUaBVLMmgWR0CpybDiwSrYdX2UKGgGaAloD0MIL90kBoEVDcCUhpRSlGgVSzJoFkdAqcltCw8nu3V9lChoBmgJaA9DCA2NJ4I4rwzAlIaUUpRoFUsyaBZHQKnJKCo0hvB1fZQoaAZoCWgPQwhD5PT1fJ0QwJSGlFKUaBVLMmgWR0CpyuVOKwY+dX2UKGgGaAloD0MIWg9fJoogE8CUhpRSlGgVSzJoFkdAqcqhf4REnnV9lChoBmgJaA9DCLMngc05WAXAlIaUUpRoFUsyaBZHQKnKXZYgaFV1fZQoaAZoCWgPQwgUP8bctaQCwJSGlFKUaBVLMmgWR0CpyhizC1qndX2UKGgGaAloD0MIniPyXUr9AsCUhpRSlGgVSzJoFkdAqcvZmI0qIHV9lChoBmgJaA9DCB4bgXhdrxHAlIaUUpRoFUsyaBZHQKnLldBSk0t1fZQoaAZoCWgPQwiu1R72QuEIwJSGlFKUaBVLMmgWR0Cpy1H27FsIdX2UKGgGaAloD0MII/Qz9boFCMCUhpRSlGgVSzJoFkdAqcsNO6/Zd3V9lChoBmgJaA9DCOfhBKbTChTAlIaUUpRoFUsyaBZHQKnMyMzdk8R1fZQoaAZoCWgPQwgfoPtyZhsPwJSGlFKUaBVLMmgWR0CpzIUWuX/pdX2UKGgGaAloD0MIbJc2HJamB8CUhpRSlGgVSzJoFkdAqcxBRKpT/HV9lChoBmgJaA9DCP/QzJNrag3AlIaUUpRoFUsyaBZHQKnL/GLDQ7d1fZQoaAZoCWgPQwgcB14td+YDwJSGlFKUaBVLMmgWR0Cpzbt6PbPAdX2UKGgGaAloD0MI5Pih0oiZC8CUhpRSlGgVSzJoFkdAqc13vBrN4nV9lChoBmgJaA9DCPJ8BtSbsRHAlIaUUpRoFUsyaBZHQKnNM9g4Otp1fZQoaAZoCWgPQwhTCU/o9UcFwJSGlFKUaBVLMmgWR0CpzO7xNIsidX2UKGgGaAloD0MIOJ7PgHpjEcCUhpRSlGgVSzJoFkdAqc7bUPQOWnV9lChoBmgJaA9DCPiqlQm/NAfAlIaUUpRoFUsyaBZHQKnOmNCJGfB1fZQoaAZoCWgPQwjtKw/SU0QLwJSGlFKUaBVLMmgWR0CpzlWf9P1tdX2UKGgGaAloD0MIi4nNx7UBFcCUhpRSlGgVSzJoFkdAqc4RXZGrj3V9lChoBmgJaA9DCES+S6lL5gXAlIaUUpRoFUsyaBZHQKnQZocrAgx1fZQoaAZoCWgPQwg3T3XIzTAJwJSGlFKUaBVLMmgWR0Cp0CNq59VndX2UKGgGaAloD0MIDMhe7/54DcCUhpRSlGgVSzJoFkdAqc/gJJGvwHV9lChoBmgJaA9DCGTll8EY0QrAlIaUUpRoFUsyaBZHQKnPm+bExZd1fZQoaAZoCWgPQwjJBWfw90sGwJSGlFKUaBVLMmgWR0Cp0fFoL5RCdX2UKGgGaAloD0MIlYCYhAtJEsCUhpRSlGgVSzJoFkdAqdGubG3nZHV9lChoBmgJaA9DCMEdqFMevQzAlIaUUpRoFUsyaBZHQKnRa0elsP91fZQoaAZoCWgPQwh9dsB1xSwPwJSGlFKUaBVLMmgWR0Cp0ScxKxs3dX2UKGgGaAloD0MIzPCfbqCAEMCUhpRSlGgVSzJoFkdAqdOSPZIxxnV9lChoBmgJaA9DCJkQc0nVdgjAlIaUUpRoFUsyaBZHQKnTT5SFXaJ1fZQoaAZoCWgPQwhO0vwxrS0MwJSGlFKUaBVLMmgWR0Cp0ww4jrzHdX2UKGgGaAloD0MI/DbEeM1rEMCUhpRSlGgVSzJoFkdAqdLH7cfvF3V9lChoBmgJaA9DCI5Yi08BkBDAlIaUUpRoFUsyaBZHQKnVL+ee4Cp1fZQoaAZoCWgPQwgllL4Qcv4NwJSGlFKUaBVLMmgWR0Cp1OzrmhdudX2UKGgGaAloD0MIh1ClZg80DMCUhpRSlGgVSzJoFkdAqdSp5VwPy3V9lChoBmgJaA9DCJxrmKHx5AbAlIaUUpRoFUsyaBZHQKnUZj5sTFl1fZQoaAZoCWgPQwix3NJqSNwOwJSGlFKUaBVLMmgWR0Cp1tTGgi/xdX2UKGgGaAloD0MIkSv1LAglBsCUhpRSlGgVSzJoFkdAqdaR06o2oHV9lChoBmgJaA9DCGGL3T6rrArAlIaUUpRoFUsyaBZHQKnWTsTnJT51fZQoaAZoCWgPQwibdFsiF7wUwJSGlFKUaBVLMmgWR0Cp1gqfWcz7dX2UKGgGaAloD0MIDi2yne/HDMCUhpRSlGgVSzJoFkdAqdhovSMLnnV9lChoBmgJaA9DCA3DR8SUaAfAlIaUUpRoFUsyaBZHQKnYJaufVZt1fZQoaAZoCWgPQwhCzvv/ODEUwJSGlFKUaBVLMmgWR0Cp1+M0xdpqdX2UKGgGaAloD0MIJSTSNv7kC8CUhpRSlGgVSzJoFkdAqdee8RL9M3V9lChoBmgJaA9DCATI0LGDagTAlIaUUpRoFUsyaBZHQKnaFxc3VCp1fZQoaAZoCWgPQwgawFsgQTEQwJSGlFKUaBVLMmgWR0Cp2dQHqu8sdX2UKGgGaAloD0MIUFH1K52PBMCUhpRSlGgVSzJoFkdAqdmRVuJk5XV9lChoBmgJaA9DCPhu88ZJURPAlIaUUpRoFUsyaBZHQKnZTZ0Syt51fZQoaAZoCWgPQwiZDTLJyHkNwJSGlFKUaBVLMmgWR0Cp29ISL61tdX2UKGgGaAloD0MIwM3ixcJwBcCUhpRSlGgVSzJoFkdAqduPzBhx53V9lChoBmgJaA9DCPsgy4KJPxHAlIaUUpRoFUsyaBZHQKnbTMINVip1fZQoaAZoCWgPQwhgkPRpFX0KwJSGlFKUaBVLMmgWR0Cp2wiL/CIldX2UKGgGaAloD0MIbeS6KeU1C8CUhpRSlGgVSzJoFkdAqd1UiOearnV9lChoBmgJaA9DCFq9w+3QsAzAlIaUUpRoFUsyaBZHQKndEWAPNFB1fZQoaAZoCWgPQwiYvtcQHNcQwJSGlFKUaBVLMmgWR0Cp3M2lEZzgdX2UKGgGaAloD0MI740hADiWBcCUhpRSlGgVSzJoFkdAqdyJDw6QvHV9lChoBmgJaA9DCP2iBP2F/gfAlIaUUpRoFUsyaBZHQKneUSTyJ9B1fZQoaAZoCWgPQwgd6KG2DUMFwJSGlFKUaBVLMmgWR0Cp3g1sUIszdX2UKGgGaAloD0MIx5v8Fp1MAcCUhpRSlGgVSzJoFkdAqd3J1Ng0CXV9lChoBmgJaA9DCHQLXYlAlQbAlIaUUpRoFUsyaBZHQKndhQqqfe11fZQoaAZoCWgPQwjVPEfku5QDwJSGlFKUaBVLMmgWR0Cp31I7FKkEdX2UKGgGaAloD0MISWO0jqpGDsCUhpRSlGgVSzJoFkdAqd8Oy3Td+HV9lChoBmgJaA9DCMx/SL99/QvAlIaUUpRoFUsyaBZHQKneyvfTCtR1fZQoaAZoCWgPQwgk7UYf84EMwJSGlFKUaBVLMmgWR0Cp3oYcm0E6dX2UKGgGaAloD0MI0QSKWMTwCcCUhpRSlGgVSzJoFkdAqeBHbfxc3XV9lChoBmgJaA9DCCe/RSdLbRDAlIaUUpRoFUsyaBZHQKngA619fC11fZQoaAZoCWgPQwj5hsJn6wAJwJSGlFKUaBVLMmgWR0Cp37//vOQhdX2UKGgGaAloD0MIz2dAvRnlFsCUhpRSlGgVSzJoFkdAqd97E1l5GHV9lChoBmgJaA9DCAywj05dWRDAlIaUUpRoFUsyaBZHQKnhNEXLvCx1fZQoaAZoCWgPQwj8VBUaiMULwJSGlFKUaBVLMmgWR0Cp4PCcoYvWdX2UKGgGaAloD0MIc5zbhHslCcCUhpRSlGgVSzJoFkdAqeCsvIwM6XV9lChoBmgJaA9DCEEpWrkXGAPAlIaUUpRoFUsyaBZHQKngZ/b0voN1fZQoaAZoCWgPQwgDXmbYKOsLwJSGlFKUaBVLMmgWR0Cp4iK8tf5UdX2UKGgGaAloD0MIN091yM3wBMCUhpRSlGgVSzJoFkdAqeHfJT2nKnV9lChoBmgJaA9DCKg5eZEJ2AvAlIaUUpRoFUsyaBZHQKnhmyPdVNp1fZQoaAZoCWgPQwgGobyPoxkTwJSGlFKUaBVLMmgWR0Cp4VZOBUaRdX2UKGgGaAloD0MIj/6Xa9FyEcCUhpRSlGgVSzJoFkdAqeMRZjhDPXV9lChoBmgJaA9DCGgFhqxu9Q3AlIaUUpRoFUsyaBZHQKnizbA1vVF1fZQoaAZoCWgPQwgkKH6MuWsOwJSGlFKUaBVLMmgWR0Cp4onNorWidX2UKGgGaAloD0MIuCHGa15VCMCUhpRSlGgVSzJoFkdAqeJFNWU8m3V9lChoBmgJaA9DCMk6HF2l+wjAlIaUUpRoFUsyaBZHQKnkAnP3SKF1fZQoaAZoCWgPQwiHbCBdbNoRwJSGlFKUaBVLMmgWR0Cp476q0dBCdX2UKGgGaAloD0MIodl1b0VyEMCUhpRSlGgVSzJoFkdAqeN6uB+WnnV9lChoBmgJaA9DCAhVavZAKw7AlIaUUpRoFUsyaBZHQKnjNcHGCI11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (849 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -3.2746466415934266, "std_reward": 0.8103908855437006, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-30T21:09:41.356973"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:296d48aba6e44cecc992ac20c9bcc062645bb7c0c09cbaa54bf843c608f59de0
|
3 |
+
size 2387
|