Image-Text-to-Text
Transformers
Safetensors
English
internvl_chat
feature-extraction
mathematics
reasoning
multi-modal-qa
math-qa
figure-qa
geometry-qa
math-word-problem
textbook-qa
vqa
geometry-diagram
synthetic-scene
chart
plot
scientific-figure
table
function-plot
abstract-scene
puzzle-test
document-image
science
conversational
custom_code
File size: 11,266 Bytes
b6e638d 83a3255 b6e638d 83a3255 b6e638d 83a3255 b2d6ffc b6e638d 83a3255 b6e638d c5bb942 b6e638d 83a3255 b6e638d 83a3255 b6e638d a9ae026 b6e638d 34bca4a b6e638d 83a3255 b6e638d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
---
base_model:
- OpenGVLab/InternVL2-8B
language:
- en
library_name: transformers
license: apache-2.0
metrics:
- accuracy
pipeline_tag: image-text-to-text
---
# MathCoder-VL: Bridging Vision and Code for Enhanced Multimodal Mathematical Reasoning
Repo: [https://github.com/mathllm/MathCoder](https://github.com/mathllm/MathCoder)
Paper: [https://huggingface.co/papers/2505.10557](https://huggingface.co/papers/2505.10557)
## Introduction
We introduce MathCoder-VL, a series of open-source large multimodal models (LMMs) specifically tailored for general math problem-solving. We also introduce [FigCodifier-8B](https://huggingface.co/MathLLMs/FigCodifier), an image-to-code model.
| Base Model |Ours |
|-------------------------------------------------------------------|-----------------------------------------------------------------------|
| [Mini-InternVL-Chat-2B-V1-5](https://huggingface.co/OpenGVLab/Mini-InternVL-Chat-2B-V1-5) | [MathCoder-VL-2B](https://huggingface.co/MathLLMs/MathCoder-VL-2B) |
| [InternVL2-8B](https://huggingface.co/OpenGVLab/InternVL2-8B) | [MathCoder-VL-8B](https://huggingface.co/MathLLMs/MathCoder-VL-8B)|
## Usage
For training and inference code, please refer to [InternVL](https://github.com/OpenGVLab/InternVL).
### Prompt for TikZ Code Generation
```
<image>
Please generate the corresponding TikZ code that accurately represents the visual elements in the image. TikZ is a powerful tool for creating vector graphics within LaTeX documents. Your generated code should be precise, well-structured, and should recreate the image as faithfully as possible.
```
<div align="center">
<img src="./examples/tikzimage.png" width="100%" title="Result Figure">
</div>
### Prompt for Python Code Generation
```
Please provide the Python code needed to reproduce this image.
<image>
```
<div align="center">
<img src="./examples/pyimage.png" width="100%" title="Result Figure">
</div>
## Motivation
<div align="center">
<img src="./examples/fig1.png" width="100%" title="Result Figure">
</div>
## Construction of FigCodifier
<div align="center">
<img src="./examples/fig2.png" width="100%" title="Result Figure">
</div>
## Construction of MathCoder-VL
<div align="center">
<img src="./examples/fig4.png" width="100%" title="Result Figure">
</div>
## Performance
<div align="center">
<img src="./examples/tab1.png" width="100%" title="Result Figure">
</div>
## **Citation**
Please cite the paper if you use our data, model or code.
```
@inproceedings{
wang2025mathcodervl,
title={MathCoder-{VL}: Bridging Vision and Code for Enhanced Multimodal Mathematical Reasoning},
author={Ke Wang and Junting Pan and Linda Wei and Aojun Zhou and Weikang Shi and Zimu Lu and Han Xiao and Yunqiao Yang and Houxing Ren and Mingjie Zhan and Hongsheng Li},
booktitle={The 63rd Annual Meeting of the Association for Computational Linguistics},
year={2025},
url={https://openreview.net/forum?id=nuvtX1imAb}
}
```
```
@inproceedings{
lu2025mathcoder2,
title={MathCoder2: Better Math Reasoning from Continued Pretraining on Model-translated Mathematical Code},
author={Zimu Lu and Aojun Zhou and Ke Wang and Houxing Ren and Weikang Shi and Junting Pan and Mingjie Zhan and Hongsheng Li},
booktitle={The Thirteenth International Conference on Learning Representations},
year={2025},
url={https://openreview.net/forum?id=1Iuw1jcIrf}
}
```
```
@inproceedings{
wang2024mathcoder,
title={MathCoder: Seamless Code Integration in {LLM}s for Enhanced Mathematical Reasoning},
author={Ke Wang and Houxing Ren and Aojun Zhou and Zimu Lu and Sichun Luo and Weikang Shi and Renrui Zhang and Linqi Song and Mingjie Zhan and Hongsheng Li},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=z8TW0ttBPp}
}
```
# **MathCoder**
This repo is for "[MathCoder: Seamless Code Integration in LLMs for Enhanced Mathematical Reasoning](https://openreview.net/pdf?id=z8TW0ttBPp)"
π₯π₯π₯ We release "[MathCoder-VL: Bridging Vision and Code for Enhanced Multimodal Mathematical Reasoning](https://openreview.net/pdf?id=lclKPTKM9R)"
## π₯ News π₯
- **[2025.05.16]** π€ [MathCoder-VL-2B](https://huggingface.co/MathLLMs/MathCoder-VL-2B), [MathCoder-VL-8B](https://huggingface.co/MathLLMs/MathCoder-VL-8B) and [FigCodifier-8B](https://huggingface.co/MathLLMs/FigCodifier) is available now! π₯π₯π₯
- **[2025.05.16]** Our MathCoder-VL is accepted to ACL 2025 Findings. π₯π₯π₯
- **[2024.05.20]** π€ [MathCodeInstruct Dataset-Plus](https://huggingface.co/datasets/MathLLMs/MathCodeInstruct-Plus) is available now! π₯
- **[2024.04.29]** π€ [MathCodeInstruct Dataset](https://huggingface.co/datasets/MathLLMs/MathCodeInstruct) is available now! π₯
- **[2024.02.27]** π [MathGenie](https://mathgenie.github.io/) achieves an accuracy of 87.7% on GSM8K and 55.7% on MATH. π Congratulations!
- **[2024.02.27]** The inference and evaluation code for MathCoders is available now.
- **[2024.01.16]** π Our [**MathCoder**](https://openreview.net/forum?id=z8TW0ttBPp) and [**CSV**](https://openreview.net/forum?id=c8McWs4Av0) has been accepted at **ICLR 2024**! π Cheers!
- **[2023.10.05]** Our work was featured by [Aran Komatsuzaki](https://twitter.com/arankomatsuzaki). Thanks!
- **[2023.10.05]** Our 7B models are available at Huggingface now.
- **[2023.10.05]** Our paper is now accessible at https://arxiv.org/abs/2310.03731.
### Datasets and Models
Our models are available at Hugging Face now.
π€ [MathCodeInstruct Dataset](https://huggingface.co/datasets/MathLLM/MathCodeInstruct)
| Base Model: Llama-2 | Base Model: Code Llama |
|-------------------------------------------------------------------|-----------------------------------------------------------------------|
| [MathCoder-L-7B](https://huggingface.co/MathLLM/MathCoder-L-7B) | [MathCoder-CL-7B](https://huggingface.co/MathLLM/MathCoder-CL-7B) |
| [MathCoder-L-13B](https://huggingface.co/MathLLM/MathCoder-L-13B) | [MathCoder-CL-34B](https://huggingface.co/MathLLM/MathCoder-CL-34B) |
## Training Data
The models are trained on the [MathCodeInstruct](https://huggingface.co/datasets/MathLLM/MathCodeInstruct) Dataset.
<br>
<div align="center">
<img src="figures/result.png" width="100%" title="Result Figure">
</div>
## **Introduction**
The recently released GPT-4 Code Interpreter has demonstrated remarkable proficiency in solving challenging math problems, primarily attributed to its ability to seamlessly reason with natural language, generate code, execute code, and continue reasoning based on the execution output. In this paper, we present a method to fine-tune open-source language models, enabling them to use code for modeling and deriving math equations and, consequently, enhancing their mathematical reasoning abilities.
We propose a method of generating novel and high-quality datasets with math problems and their code-based solutions, referred to as MathCodeInstruct. Each solution interleaves *natural language*, *code*, and *execution results*.
We also introduce a customized supervised fine-tuning and inference approach. This approach yields the MathCoder models, a family of models capable of generating code-based solutions for solving challenging math problems.
Impressively, the MathCoder models achieve state-of-the-art scores among open-source LLMs on the MATH (45.2\%) and GSM8K (83.9\%) datasets, substantially outperforming other open-source alternatives. Notably, the MathCoder model not only surpasses ChatGPT-3.5 and PaLM-2 on GSM8K and MATH but also outperforms GPT-4 on the competition-level MATH dataset. The proposed dataset and models will be released upon acceptance.
<br>
<div align="center">
<img src="figures/pipeline.png" width="100%" title="Result Figure">
</div>
## Usage
### Model deployment
We use the Text Generation Inference (TGI) to deploy our MathCoders for response generation.
TGI is a toolkit for deploying and serving Large Language Models (LLMs). TGI enables high-performance text generation for the most popular open-source LLMs, including Llama, Falcon, StarCoder, BLOOM, GPT-NeoX, and T5. Your can follow the guide [here](https://huggingface.co/docs/text-generation-inference/index).
After successfully installing TGI, you can easily deploy the models using `deploy.sh`.
```sh
model_path="local model path"
max_input_tokens=1536
max_total_tokens=2048
set -x
hostname -I # print the host ip
text-generation-launcher --port 8000 \
--max-batch-prefill-tokens ${max_input_tokens} \
--max-input-length ${max_input_tokens} \
--max-total-tokens ${max_total_tokens} \
--model-id ${model_path}
```
### Inference
We provide a script for inference. Just replace the `ip` and `port` in the following command correctly with the API forwarded by TGI like:
```sh
python inference.py --pnum=4 --outdir=outs/debug --ip=10.119.18.159 --port=8001 --type=test --dataset=GSM8K
```
We also open-source all of the model outputs from our MathCoders under the outs/ folder.
### Evaluation
To evaluate the predicted answer, run the following command:
```sh
python evaluate.py outs/MathCoder-L-7b/MATH/MATH_test_result-20230917-2026.jsonl
```
## **Citation**
Please cite the paper if you use our data, model or code.
```
@inproceedings{
wang2025mathcodervl,
title={MathCoder-{VL}: Bridging Vision and Code for Enhanced Multimodal Mathematical Reasoning},
author={Ke Wang and Junting Pan and Linda Wei and Aojun Zhou and Weikang Shi and Zimu Lu and Han Xiao and Yunqiao Yang and Houxing Ren and Mingjie Zhan and Hongsheng Li},
booktitle={The 63rd Annual Meeting of the Association for Computational Linguistics},
year={2025},
url={https://openreview.net/forum?id=nuvtX1imAb}
}
```
```
@inproceedings{
lu2025mathcoder2,
title={MathCoder2: Better Math Reasoning from Continued Pretraining on Model-translated Mathematical Code},
author={Zimu Lu and Aojun Zhou and Ke Wang and Houxing Ren and Weikang Shi and Junting Pan and Mingjie Zhan and Hongsheng Li},
booktitle={The Thirteenth International Conference on Learning Representations},
year={2025},
url={https://openreview.net/forum?id=1Iuw1jcIrf}
}
```
```
@inproceedings{
wang2024mathcoder,
title={MathCoder: Seamless Code Integration in {LLM}s for Enhanced Mathematical Reasoning},
author={Ke Wang and Houxing Ren and Aojun Zhou and Zimu Lu and Sichun Luo and Weikang Shi and Renrui Zhang and Linqi Song and Mingjie Zhan and Hongsheng Li},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=z8TW0ttBPp}
}
```
```
@inproceedings{
zhou2024solving,
title={Solving Challenging Math Word Problems Using {GPT}-4 Code Interpreter with Code-based Self-Verification},
author={Aojun Zhou and Ke Wang and Zimu Lu and Weikang Shi and Sichun Luo and Zipeng Qin and Shaoqing Lu and Anya Jia and Linqi Song and Mingjie Zhan and Hongsheng Li},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=c8McWs4Av0}
}
``` |