File size: 4,137 Bytes
91486cc
 
 
d3d8721
91486cc
d3d8721
7cf8a39
99b07e5
d3d8721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cf8a39
 
d3d8721
 
 
91486cc
 
 
 
 
641f04d
 
91486cc
 
 
 
 
 
 
 
0d12af2
91486cc
 
 
 
 
 
0d12af2
 
42677bb
 
0d12af2
 
 
42677bb
 
 
 
0d12af2
 
 
 
 
 
 
 
 
 
 
 
91486cc
 
03ac246
91486cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4f66b2
91486cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
---
license: apache-2.0
language:
- en
metrics:
- accuracy
pipeline_tag: image-text-to-text
tags:
- mathematics
- reasoning
- multi-modal-qa
- math-qa
- figure-qa
- geometry-qa
- math-word-problem
- textbook-qa
- vqa
- geometry-diagram
- synthetic-scene
- chart
- plot
- scientific-figure
- table
- function-plot
- abstract-scene
- puzzle-test
- document-image
- science
library_name: transformers
base_model:
- OpenGVLab/InternVL2-8B
datasets:
- MathLLMs/MM-MathInstruct
---
# MathCoder-VL: Bridging Vision and Code for Enhanced Multimodal Mathematical Reasoning

Repo: [https://github.com/mathllm/MathCoder](https://github.com/mathllm/MathCoder)

Paper: [https://huggingface.co/papers/2505.10557](https://huggingface.co/papers/2505.10557)


## Introduction
We introduce MathCoder-VL, a series of open-source large multimodal models (LMMs) specifically tailored for general math problem-solving. We also introduce [FigCodifier-8B](https://huggingface.co/MathLLMs/FigCodifier), an image-to-code model.

| Base Model                                          	|Ours                                               |
|-------------------------------------------------------------------|-----------------------------------------------------------------------|
|  [Mini-InternVL-Chat-2B-V1-5](https://huggingface.co/OpenGVLab/Mini-InternVL-Chat-2B-V1-5)  |  [MathCoder-VL-2B](https://huggingface.co/MathLLMs/MathCoder-VL-2B)   	|
|  [InternVL2-8B](https://huggingface.co/OpenGVLab/InternVL2-8B)  |     	[MathCoder-VL-8B](https://huggingface.co/MathLLMs/MathCoder-VL-8B)|
|  [InternVL2-8B](https://huggingface.co/OpenGVLab/InternVL2-8B)  |     	[FigCodifier-8B](https://huggingface.co/MathLLMs/FigCodifier)|



## Usage
For training and inference code, please refer to [InternVL](https://github.com/OpenGVLab/InternVL).

```
from datasets import load_dataset
from PIL import Image
from io import BytesIO

mm_mathinstruct = load_dataset("MathLLMs/MM-MathInstruct")
print(mm_mathinstruct)

# show the last image
img = Image.open(BytesIO(mm_mathinstruct['train'][-1]['image']))
img.show()
```

It should print:
```
DatasetDict({
    train: Dataset({
        features: ['id', 'image', 'question', 'solution', 'image_path'],
        num_rows: 2871988
    })
})
```


## Motivation

<div align="center">
  <img src="./examples/fig1.png" width="100%" title="Result Figure">
</div>

## Construction of FigCodifier

<div align="center">
  <img src="./examples/fig2.png" width="100%" title="Result Figure">
</div>

## Construction of MathCoder-VL

<div align="center">
  <img src="./examples/fig4.png" width="100%" title="Result Figure">
</div>

## Performance

<div align="center">
  <img src="./examples/tab1.png" width="100%" title="Result Figure">
</div>

## **Citation**

Please cite the paper if you use our data, model or code.

```
@inproceedings{
wang2025mathcodervl,
title={MathCoder-{VL}: Bridging Vision and Code for Enhanced Multimodal Mathematical Reasoning},
author={Ke Wang and Junting Pan and Linda Wei and Aojun Zhou and Weikang Shi and Zimu Lu and Han Xiao and Yunqiao Yang and Houxing Ren and Mingjie Zhan and Hongsheng Li},
booktitle={The 63rd Annual Meeting of the Association for Computational Linguistics},
year={2025},
url={https://openreview.net/forum?id=nuvtX1imAb}
}
```
```
@inproceedings{
lu2025mathcoder2,
title={MathCoder2: Better Math Reasoning from Continued Pretraining on Model-translated Mathematical Code},
author={Zimu Lu and Aojun Zhou and Ke Wang and Houxing Ren and Weikang Shi and Junting Pan and Mingjie Zhan and Hongsheng Li},
booktitle={The Thirteenth International Conference on Learning Representations},
year={2025},
url={https://openreview.net/forum?id=1Iuw1jcIrf}
}
```
```
@inproceedings{
wang2024mathcoder,
title={MathCoder: Seamless Code Integration in {LLM}s for Enhanced Mathematical Reasoning},
author={Ke Wang and Houxing Ren and Aojun Zhou and Zimu Lu and Sichun Luo and Weikang Shi and Renrui Zhang and Linqi Song and Mingjie Zhan and Hongsheng Li},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=z8TW0ttBPp}
}
```