--- license: apache-2.0 language: - en library_name: llama.cpp tags: - gguf - quantized - int8 - offline-ai - local-llm - chatnonet model_type: causal inference: true pipeline_tag: text-generation --- # NONET **NONET** is a family of **offline**, quantized large language models fine-tuned for **question answering** with **direct, concise answers**. Designed for local execution using `llama.cpp`, NONET is available in multiple sizes and optimized for Android or Python-based environments. ## Model Details ### Model Description NONET is intended for lightweight offline use, particularly on local devices like mobile phones or single-board computers. The models have been **fine-tuned for direct-answer QA** and quantized to **int8 (q8_0)** using `llama.cpp`. | Model Name | Base Model | Size | |----------------------------------|--------------------|--------| | ChatNONET-135m-tuned-q8_0.gguf | Smollm | 135M | | ChatNONET-300m-tuned-q8_0.gguf | Smollm | 300M | | ChatNONET-1B-tuned-q8_0.gguf | LLaMA 3.2 | 1B | | ChatNONET-3B-tuned-q8_0.gguf | LLaMA 3.2 | 3B | - **Developed by:** McaTech (Michael Cobol Agan) - **Model type:** Causal decoder-only transformer - **Languages:** English - **License:** Apache 2.0 - **Finetuned from:** - Smollm (135M, 300M variants) - LLaMA 3.2 (1B, 3B variants) ## Uses ### Direct Use - Offline QA chatbot - Local assistants (no internet required) - Embedded Android or Python apps ### Out-of-Scope Use - Long-form text generation - Tasks requiring real-time web access - Creative storytelling or coding tasks ## Bias, Risks, and Limitations NONET may reproduce biases present in its base models or fine-tuning data. Outputs should not be relied upon for sensitive or critical decisions. ### Recommendations - Validate important responses - Choose model size based on your device capability - Avoid over-reliance for personal or legal advice ## How to Get Started with the Model ### For Android Devices - Try the **Android app** in my **Github**: [Download ChatNONET APK](https://github.com/Mca-Tech/ChatNONET) ### You can also build llama.cpp your own and run it ```bash # Clone llama.cpp and build it git clone https://github.com/ggerganov/llama.cpp cd llama.cpp make # Run the model ./llama-cli -m ./ChatNONET-300m-tuned-q8_0.gguf -p "You are ChatNONET AI assistant." -cnv ```` ## Training Details * **Finetuning Goal:** Direct-answer question answering * **Precision:** FP16 mixed precision * **Frameworks:** PyTorch, Transformers, Bitsandbytes * **Quantization:** int8 GGUF (`q8_0`) via `llama.cpp` ## Evaluation * Evaluated internally on short QA prompts * Capable of direct factual or logical answers * Larger models perform better on reasoning tasks ## Technical Specifications * **Architecture:** * Smollm (135M, 300M) * LLaMA 3.2 (1B, 3B) * **Format:** GGUF * **Quantization:** q8\_0 (int8) * **Deployment:** Mobile (Android) and desktop via `llama.cpp` ## Citation ```bibtex @misc{chatnonet2025, title={ChatNONET: Offline Quantized Q&A Models}, author={Michael Cobol Agan}, year={2025}, note={\url{https://huggingface.co/McaTech/Nonet}}, } ``` ## Contact * **Author:** Michael Cobol Agan (McaTech) * **Facebook:** [FB Profile](https://www.facebook.com/michael.cobol.agan.2025/)