kamuy-shennai
commited on
Commit
·
4591b75
1
Parent(s):
3de1bb5
update function call
Browse files- docs/function_call_guide.md +86 -53
- docs/function_call_guide_cn.md +86 -53
- tokenizer_config.json +1 -1
docs/function_call_guide.md
CHANGED
|
@@ -18,21 +18,19 @@ from transformers import AutoTokenizer
|
|
| 18 |
def get_default_tools():
|
| 19 |
return [
|
| 20 |
{
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
},
|
| 32 |
-
}
|
| 33 |
-
"required": ["location"],
|
| 34 |
-
"type": "object"
|
| 35 |
}
|
|
|
|
|
|
|
| 36 |
}
|
| 37 |
]
|
| 38 |
|
|
@@ -54,6 +52,22 @@ text = tokenizer.apply_chat_template(
|
|
| 54 |
add_generation_prompt=True,
|
| 55 |
tools=tools
|
| 56 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
```
|
| 58 |
|
| 59 |
## 🛠️ Function Call Definition
|
|
@@ -102,9 +116,9 @@ Function calls need to be defined in the `tools` field of the request body. Each
|
|
| 102 |
When processed internally by the model, function definitions are converted to a special format and concatenated to the input text:
|
| 103 |
|
| 104 |
```
|
| 105 |
-
|
| 106 |
-
MiniMax AI is an AI assistant independently developed by MiniMax.
|
| 107 |
-
|
| 108 |
You are provided with these tools:
|
| 109 |
<tools>
|
| 110 |
{"name": "search_web", "description": "Search function.", "parameters": {"properties": {"query_list": {"description": "Keywords for search, with list element count of 1.", "items": {"type": "string"}, "type": "array"}, "query_tag": {"description": "Classification of the query", "items": {"type": "string"}, "type": "array"}}, "required": ["query_list", "query_tag"], "type": "object"}}
|
|
@@ -114,10 +128,10 @@ If you need to call tools, please respond with <tool_calls></tool_calls> XML tag
|
|
| 114 |
<tool_calls>
|
| 115 |
{"name": <tool-name>, "arguments": <args-json-object>}
|
| 116 |
...
|
| 117 |
-
</tool_calls>
|
| 118 |
-
|
| 119 |
-
When were the most recent launch events for OpenAI and Gemini
|
| 120 |
-
|
| 121 |
```
|
| 122 |
|
| 123 |
### Model Output Format
|
|
@@ -193,23 +207,33 @@ def execute_function_call(function_name: str, arguments: dict):
|
|
| 193 |
# Build function execution result
|
| 194 |
return {
|
| 195 |
"role": "tool",
|
| 196 |
-
"
|
| 197 |
-
|
| 198 |
-
"
|
| 199 |
-
"
|
| 200 |
-
"
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
elif function_name == "search_web":
|
| 205 |
query_list = arguments.get("query_list", [])
|
| 206 |
query_tag = arguments.get("query_tag", [])
|
| 207 |
# Simulate search results
|
| 208 |
return {
|
| 209 |
"role": "tool",
|
| 210 |
-
"
|
| 211 |
-
|
| 212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
|
| 214 |
return None
|
| 215 |
```
|
|
@@ -224,47 +248,56 @@ If the model decides to call `search_web`, we suggest you to return the function
|
|
| 224 |
|
| 225 |
```json
|
| 226 |
{
|
| 227 |
-
"
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
|
|
|
| 233 |
]
|
| 234 |
}
|
| 235 |
```
|
| 236 |
|
| 237 |
Corresponding model input format:
|
| 238 |
```
|
| 239 |
-
|
| 240 |
-
|
|
|
|
|
|
|
| 241 |
```
|
| 242 |
|
| 243 |
|
| 244 |
#### Multiple Result
|
| 245 |
-
If the model decides to call `search_web` and `get_current_weather` at the same time, we suggest you to return the multiple function results in the following format,
|
| 246 |
|
| 247 |
|
| 248 |
```json
|
| 249 |
{
|
| 250 |
-
"
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
]
|
| 257 |
}
|
| 258 |
```
|
| 259 |
|
| 260 |
Corresponding model input format:
|
| 261 |
```
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
|
| 266 |
-
|
| 267 |
-
|
| 268 |
```
|
| 269 |
|
| 270 |
-
While we suggest following the above formats, as long as the model input is easy to understand, the specific values of `name` and `
|
|
|
|
| 18 |
def get_default_tools():
|
| 19 |
return [
|
| 20 |
{
|
| 21 |
+
"name": "get_current_weather",
|
| 22 |
+
"description": "Get the latest weather for a location",
|
| 23 |
+
"parameters": {
|
| 24 |
+
"type": "object",
|
| 25 |
+
"properties": {
|
| 26 |
+
"location": {
|
| 27 |
+
"type": "string",
|
| 28 |
+
"description": "A certain city, such as Beijing, Shanghai"
|
| 29 |
+
}
|
| 30 |
+
},
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
}
|
| 32 |
+
"required": ["location"],
|
| 33 |
+
"type": "object"
|
| 34 |
}
|
| 35 |
]
|
| 36 |
|
|
|
|
| 52 |
add_generation_prompt=True,
|
| 53 |
tools=tools
|
| 54 |
)
|
| 55 |
+
|
| 56 |
+
# Post request
|
| 57 |
+
import requests
|
| 58 |
+
payload = {
|
| 59 |
+
"model": "MiniMaxAI/MiniMax-M1-40k",
|
| 60 |
+
"prompt": text,
|
| 61 |
+
"max_tokens": 4000
|
| 62 |
+
}
|
| 63 |
+
|
| 64 |
+
response = requests.post(
|
| 65 |
+
"http://localhost:8000/v1/completions",
|
| 66 |
+
headers={"Content-Type": "application/json"},
|
| 67 |
+
json=payload,
|
| 68 |
+
stream=False,
|
| 69 |
+
)
|
| 70 |
+
print(response.json()["choices"][0]["text"])
|
| 71 |
```
|
| 72 |
|
| 73 |
## 🛠️ Function Call Definition
|
|
|
|
| 116 |
When processed internally by the model, function definitions are converted to a special format and concatenated to the input text:
|
| 117 |
|
| 118 |
```
|
| 119 |
+
<begin_of_document><beginning_of_sentence>system ai_setting=MiniMax AI
|
| 120 |
+
MiniMax AI is an AI assistant independently developed by MiniMax. <end_of_sentence>
|
| 121 |
+
<beginning_of_sentence>system tool_setting=tools
|
| 122 |
You are provided with these tools:
|
| 123 |
<tools>
|
| 124 |
{"name": "search_web", "description": "Search function.", "parameters": {"properties": {"query_list": {"description": "Keywords for search, with list element count of 1.", "items": {"type": "string"}, "type": "array"}, "query_tag": {"description": "Classification of the query", "items": {"type": "string"}, "type": "array"}}, "required": ["query_list", "query_tag"], "type": "object"}}
|
|
|
|
| 128 |
<tool_calls>
|
| 129 |
{"name": <tool-name>, "arguments": <args-json-object>}
|
| 130 |
...
|
| 131 |
+
</tool_calls><end_of_sentence>
|
| 132 |
+
<beginning_of_sentence>user name=User
|
| 133 |
+
When were the most recent launch events for OpenAI and Gemini?<end_of_sentence>
|
| 134 |
+
<beginning_of_sentence>ai name=MiniMax AI
|
| 135 |
```
|
| 136 |
|
| 137 |
### Model Output Format
|
|
|
|
| 207 |
# Build function execution result
|
| 208 |
return {
|
| 209 |
"role": "tool",
|
| 210 |
+
"content": [
|
| 211 |
+
{
|
| 212 |
+
"name": function_name,
|
| 213 |
+
"type": "text",
|
| 214 |
+
"text": json.dumps({
|
| 215 |
+
"location": location,
|
| 216 |
+
"temperature": "25",
|
| 217 |
+
"unit": "celsius",
|
| 218 |
+
"weather": "Sunny"
|
| 219 |
+
}, ensure_ascii=False)
|
| 220 |
+
}
|
| 221 |
+
]
|
| 222 |
+
}
|
| 223 |
elif function_name == "search_web":
|
| 224 |
query_list = arguments.get("query_list", [])
|
| 225 |
query_tag = arguments.get("query_tag", [])
|
| 226 |
# Simulate search results
|
| 227 |
return {
|
| 228 |
"role": "tool",
|
| 229 |
+
"content": [
|
| 230 |
+
{
|
| 231 |
+
"name": function_name,
|
| 232 |
+
"type": "text",
|
| 233 |
+
"text": f"Search keywords: {query_list}, Categories: {query_tag}\nSearch results: Relevant information found"
|
| 234 |
+
}
|
| 235 |
+
]
|
| 236 |
+
}
|
| 237 |
|
| 238 |
return None
|
| 239 |
```
|
|
|
|
| 248 |
|
| 249 |
```json
|
| 250 |
{
|
| 251 |
+
"role": "tool",
|
| 252 |
+
"content": [
|
| 253 |
+
{
|
| 254 |
+
"name": "search_web",
|
| 255 |
+
"type": "text",
|
| 256 |
+
"text": "test_result"
|
| 257 |
+
}
|
| 258 |
]
|
| 259 |
}
|
| 260 |
```
|
| 261 |
|
| 262 |
Corresponding model input format:
|
| 263 |
```
|
| 264 |
+
<beginning_of_sentence>tool name=tools
|
| 265 |
+
tool name: search_web
|
| 266 |
+
tool result: test_result
|
| 267 |
+
<end_of_sentence>
|
| 268 |
```
|
| 269 |
|
| 270 |
|
| 271 |
#### Multiple Result
|
| 272 |
+
If the model decides to call `search_web` and `get_current_weather` at the same time, we suggest you to return the multiple function results in the following format, use the `content` field to contain multiple results.
|
| 273 |
|
| 274 |
|
| 275 |
```json
|
| 276 |
{
|
| 277 |
+
"role": "tool",
|
| 278 |
+
"content": [
|
| 279 |
+
{
|
| 280 |
+
"name": "search_web",
|
| 281 |
+
"type": "text",
|
| 282 |
+
"text": "test_result1"
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"name": "get_current_weather",
|
| 286 |
+
"type": "text",
|
| 287 |
+
"text": "test_result2"
|
| 288 |
+
}
|
| 289 |
]
|
| 290 |
}
|
| 291 |
```
|
| 292 |
|
| 293 |
Corresponding model input format:
|
| 294 |
```
|
| 295 |
+
<beginning_of_sentence>tool name=tools
|
| 296 |
+
tool name: search_web
|
| 297 |
+
tool result: test_result1
|
| 298 |
|
| 299 |
+
tool name: get_current_weather
|
| 300 |
+
tool result: test_result2<end_of_sentence>
|
| 301 |
```
|
| 302 |
|
| 303 |
+
While we suggest following the above formats, as long as the model input is easy to understand, the specific values of `name` and `text` is entirely up to the caller.
|
docs/function_call_guide_cn.md
CHANGED
|
@@ -16,21 +16,19 @@ from transformers import AutoTokenizer
|
|
| 16 |
def get_default_tools():
|
| 17 |
return [
|
| 18 |
{
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
},
|
| 30 |
-
}
|
| 31 |
-
"required": ["location"],
|
| 32 |
-
"type": "object"
|
| 33 |
}
|
|
|
|
|
|
|
| 34 |
}
|
| 35 |
]
|
| 36 |
|
|
@@ -52,6 +50,22 @@ text = tokenizer.apply_chat_template(
|
|
| 52 |
add_generation_prompt=True,
|
| 53 |
tools=tools
|
| 54 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
```
|
| 56 |
|
| 57 |
## 🛠️ 函数调用的定义
|
|
@@ -100,9 +114,9 @@ text = tokenizer.apply_chat_template(
|
|
| 100 |
在模型内部处理时,函数定义会被转换为特殊格式并拼接到输入文本中:
|
| 101 |
|
| 102 |
```
|
| 103 |
-
|
| 104 |
-
MiniMax AI是由上海稀宇科技有限公司(MiniMax)自主研发的AI
|
| 105 |
-
|
| 106 |
You are provided with these tools:
|
| 107 |
<tools>
|
| 108 |
{"name": "search_web", "description": "搜索函数。", "parameters": {"properties": {"query_list": {"description": "进行搜索的关键词,列表元素个数为1。", "items": {"type": "string"}, "type": "array"}, "query_tag": {"description": "query的分类", "items": {"type": "string"}, "type": "array"}}, "required": ["query_list", "query_tag"], "type": "object"}}
|
|
@@ -112,10 +126,10 @@ If you need to call tools, please respond with <tool_calls></tool_calls> XML tag
|
|
| 112 |
<tool_calls>
|
| 113 |
{"name": <tool-name>, "arguments": <args-json-object>}
|
| 114 |
...
|
| 115 |
-
</tool_calls>
|
| 116 |
-
|
| 117 |
-
OpenAI 和 Gemini
|
| 118 |
-
|
| 119 |
```
|
| 120 |
|
| 121 |
### 模型输出格式
|
|
@@ -191,23 +205,33 @@ def execute_function_call(function_name: str, arguments: dict):
|
|
| 191 |
# 构建函数执行结果
|
| 192 |
return {
|
| 193 |
"role": "tool",
|
| 194 |
-
"
|
| 195 |
-
|
| 196 |
-
"
|
| 197 |
-
"
|
| 198 |
-
"
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
elif function_name == "search_web":
|
| 203 |
query_list = arguments.get("query_list", [])
|
| 204 |
query_tag = arguments.get("query_tag", [])
|
| 205 |
# 模拟搜索结果
|
| 206 |
return {
|
| 207 |
"role": "tool",
|
| 208 |
-
"
|
| 209 |
-
|
| 210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
|
| 212 |
return None
|
| 213 |
```
|
|
@@ -222,46 +246,55 @@ def execute_function_call(function_name: str, arguments: dict):
|
|
| 222 |
|
| 223 |
```json
|
| 224 |
{
|
| 225 |
-
"
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
|
|
|
| 231 |
]
|
| 232 |
}
|
| 233 |
```
|
| 234 |
|
| 235 |
对应如下的模型输入格式:
|
| 236 |
```
|
| 237 |
-
|
| 238 |
-
|
|
|
|
|
|
|
| 239 |
```
|
| 240 |
|
| 241 |
|
| 242 |
#### 多个结果
|
| 243 |
-
假如模型同时调用了 `search_web` 和 `get_current_weather` 函数,您可以参考如下格式添加执行结果,`
|
| 244 |
|
| 245 |
```json
|
| 246 |
{
|
| 247 |
-
"
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
]
|
| 254 |
}
|
| 255 |
```
|
| 256 |
|
| 257 |
对应如下的模型输入格式:
|
| 258 |
```
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
|
| 263 |
-
|
| 264 |
-
|
| 265 |
```
|
| 266 |
|
| 267 |
-
虽然我们建议您参考以上格式,但只要返回给模型的输入易于理解,`name` 和 `
|
|
|
|
| 16 |
def get_default_tools():
|
| 17 |
return [
|
| 18 |
{
|
| 19 |
+
"name": "get_current_weather",
|
| 20 |
+
"description": "Get the latest weather for a location",
|
| 21 |
+
"parameters": {
|
| 22 |
+
"type": "object",
|
| 23 |
+
"properties": {
|
| 24 |
+
"location": {
|
| 25 |
+
"type": "string",
|
| 26 |
+
"description": "A certain city, such as Beijing, Shanghai"
|
| 27 |
+
}
|
| 28 |
+
},
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
}
|
| 30 |
+
"required": ["location"],
|
| 31 |
+
"type": "object"
|
| 32 |
}
|
| 33 |
]
|
| 34 |
|
|
|
|
| 50 |
add_generation_prompt=True,
|
| 51 |
tools=tools
|
| 52 |
)
|
| 53 |
+
|
| 54 |
+
# 发送请求
|
| 55 |
+
import requests
|
| 56 |
+
payload = {
|
| 57 |
+
"model": "MiniMaxAI/MiniMax-M1-40k",
|
| 58 |
+
"prompt": text,
|
| 59 |
+
"max_tokens": 4000
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
response = requests.post(
|
| 63 |
+
"http://localhost:8000/v1/completions",
|
| 64 |
+
headers={"Content-Type": "application/json"},
|
| 65 |
+
json=payload,
|
| 66 |
+
stream=False,
|
| 67 |
+
)
|
| 68 |
+
print(response.json()["choices"][0]["text"])
|
| 69 |
```
|
| 70 |
|
| 71 |
## 🛠️ 函数调用的定义
|
|
|
|
| 114 |
在模型内部处理时,函数定义会被转换为特殊格式并拼接到输入文本中:
|
| 115 |
|
| 116 |
```
|
| 117 |
+
<begin_of_document><beginning_of_sentence>system ai_setting=MiniMax AI
|
| 118 |
+
MiniMax AI是由上海稀宇科技有限公司(MiniMax)自主研发的AI助理。<end_of_sentence>
|
| 119 |
+
<beginning_of_sentence>system tool_setting=tools
|
| 120 |
You are provided with these tools:
|
| 121 |
<tools>
|
| 122 |
{"name": "search_web", "description": "搜索函数。", "parameters": {"properties": {"query_list": {"description": "进行搜索的关键词,列表元素个数为1。", "items": {"type": "string"}, "type": "array"}, "query_tag": {"description": "query的分类", "items": {"type": "string"}, "type": "array"}}, "required": ["query_list", "query_tag"], "type": "object"}}
|
|
|
|
| 126 |
<tool_calls>
|
| 127 |
{"name": <tool-name>, "arguments": <args-json-object>}
|
| 128 |
...
|
| 129 |
+
</tool_calls><end_of_sentence>
|
| 130 |
+
<beginning_of_sentence>user name=用户
|
| 131 |
+
OpenAI 和 Gemini 的最近一次发布会都是什么时候?<end_of_sentence>
|
| 132 |
+
<beginning_of_sentence>ai name=MiniMax AI
|
| 133 |
```
|
| 134 |
|
| 135 |
### 模型输出格式
|
|
|
|
| 205 |
# 构建函数执行结果
|
| 206 |
return {
|
| 207 |
"role": "tool",
|
| 208 |
+
"content": [
|
| 209 |
+
{
|
| 210 |
+
"name": function_name,
|
| 211 |
+
"type": "text",
|
| 212 |
+
"text": json.dumps({
|
| 213 |
+
"location": location,
|
| 214 |
+
"temperature": "25",
|
| 215 |
+
"unit": "celsius",
|
| 216 |
+
"weather": "晴朗"
|
| 217 |
+
}, ensure_ascii=False)
|
| 218 |
+
}
|
| 219 |
+
]
|
| 220 |
+
}
|
| 221 |
elif function_name == "search_web":
|
| 222 |
query_list = arguments.get("query_list", [])
|
| 223 |
query_tag = arguments.get("query_tag", [])
|
| 224 |
# 模拟搜索结果
|
| 225 |
return {
|
| 226 |
"role": "tool",
|
| 227 |
+
"content": [
|
| 228 |
+
{
|
| 229 |
+
"name": function_name,
|
| 230 |
+
"type": "text",
|
| 231 |
+
"text": f"搜索关键词: {query_list}, 分类: {query_tag}\n搜索结果: 相关信息已找到"
|
| 232 |
+
}
|
| 233 |
+
]
|
| 234 |
+
}
|
| 235 |
|
| 236 |
return None
|
| 237 |
```
|
|
|
|
| 246 |
|
| 247 |
```json
|
| 248 |
{
|
| 249 |
+
"role": "tool",
|
| 250 |
+
"content": [
|
| 251 |
+
{
|
| 252 |
+
"name": "search_web",
|
| 253 |
+
"type": "text",
|
| 254 |
+
"text": "test_result"
|
| 255 |
+
}
|
| 256 |
]
|
| 257 |
}
|
| 258 |
```
|
| 259 |
|
| 260 |
对应如下的模型输入格式:
|
| 261 |
```
|
| 262 |
+
<beginning_of_sentence>tool name=tools
|
| 263 |
+
tool name: search_web
|
| 264 |
+
tool result: test_result
|
| 265 |
+
<end_of_sentence>
|
| 266 |
```
|
| 267 |
|
| 268 |
|
| 269 |
#### 多个结果
|
| 270 |
+
假如模型同时调用了 `search_web` 和 `get_current_weather` 函数,您可以参考如下格式添加执行结果,`content`包含多个结果。
|
| 271 |
|
| 272 |
```json
|
| 273 |
{
|
| 274 |
+
"role": "tool",
|
| 275 |
+
"content": [
|
| 276 |
+
{
|
| 277 |
+
"name": "search_web",
|
| 278 |
+
"type": "text",
|
| 279 |
+
"text": "test_result1"
|
| 280 |
+
},
|
| 281 |
+
{
|
| 282 |
+
"name": "get_current_weather",
|
| 283 |
+
"type": "text",
|
| 284 |
+
"text": "test_result2"
|
| 285 |
+
}
|
| 286 |
]
|
| 287 |
}
|
| 288 |
```
|
| 289 |
|
| 290 |
对应如下的模型输入格式:
|
| 291 |
```
|
| 292 |
+
<beginning_of_sentence>tool name=tools
|
| 293 |
+
tool name: search_web
|
| 294 |
+
tool result: test_result1
|
| 295 |
|
| 296 |
+
tool name: get_current_weather
|
| 297 |
+
tool result: test_result2<end_of_sentence>
|
| 298 |
```
|
| 299 |
|
| 300 |
+
虽然我们建议您参考以上格式,但只要返回给模型的输入易于理解,`name` 和 `text` 的具体内容完全由您自主决定。
|
tokenizer_config.json
CHANGED
|
@@ -6,5 +6,5 @@
|
|
| 6 |
"model_max_length": 40960000,
|
| 7 |
"tokenizer_class": "GPT2Tokenizer",
|
| 8 |
"unk_token": "<end_of_document>",
|
| 9 |
-
"chat_template": "{{ '<begin_of_document>' -}}{% set ns = namespace(system_prompt='') -%}{% for message in messages -%}{% if message['role'] == 'system' -%}{% set ns.system_prompt = ns.system_prompt + message['content'][0]['text'] -%}{% endif -%}{%- endfor -%}{% if ns.system_prompt != '' -%}{{ '<beginning_of_sentence>system ai_setting=assistant\n' + ns.system_prompt + '<end_of_sentence>\n' -}}{%- endif -%}{% if tools -%}{{ '<beginning_of_sentence>system tool_setting=tools\nYou are provided with these tools:\n<tools>\n' -}}{% for tool in tools -%}{{ tool | tojson ~ '\n' -}}{%- endfor -%}{{ '</tools>\n\nIf you need to call tools, please respond with <tool_calls></tool_calls> XML tags, and provide tool-name and json-object of arguments, following the format below:\n<tool_calls>\n{''name'': <tool-name-1>, ''arguments'': <args-json-object-1>}\n...\n</tool_calls><end_of_sentence>\n' -}}{%- endif -%}{% for message in messages -%}{% if message['role'] == 'user' -%}{{ '<beginning_of_sentence>user name=user\n' + message['content'][0]['text'] + '<end_of_sentence>\n' -}}{% elif message['role'] == 'assistant' -%}{{ '<beginning_of_sentence>ai name=assistant\n' -}}{% for content in message['content'] | selectattr('type', 'equalto', 'text') -%}{{ content['text'] -}}{%- endfor -%}{{ '<end_of_sentence>\n' -}}{% elif message['role'] == 'tool' -%}{{ '<beginning_of_sentence>tool name=tools\n' }} {%- for content in message['content'] -%}{{- 'tool name: ' + content['name'] + '\n' + 'tool result: ' + content['text'] + '\n\n' -}} {%- endfor -%}{{- '<end_of_sentence>\n' -}}{% endif -%}{%- endfor -%}{% if add_generation_prompt -%}{{ '<beginning_of_sentence>ai name=assistant\n' -}}{%- endif -%}"
|
| 10 |
}
|
|
|
|
| 6 |
"model_max_length": 40960000,
|
| 7 |
"tokenizer_class": "GPT2Tokenizer",
|
| 8 |
"unk_token": "<end_of_document>",
|
| 9 |
+
"chat_template": "{{ '<begin_of_document>' -}}{% set ns = namespace(system_prompt='') -%}{% for message in messages -%}{% if message['role'] == 'system' -%}{% set ns.system_prompt = ns.system_prompt + message['content'][0]['text'] -%}{% endif -%}{%- endfor -%}{% if ns.system_prompt != '' -%}{{ '<beginning_of_sentence>system ai_setting=assistant\n' + ns.system_prompt + '<end_of_sentence>\n' -}}{%- endif -%}{% if tools -%}{{ '<beginning_of_sentence>system tool_setting=tools\nYou are provided with these tools:\n<tools>\n' -}}{% for tool in tools -%}{{ tool | tojson ~ '\n' -}}{%- endfor -%}{{ '</tools>\n\nIf you need to call tools, please respond with <tool_calls></tool_calls> XML tags, and provide tool-name and json-object of arguments, following the format below:\n<tool_calls>\n{''\"name\"'': <tool-name-1>, ''\"arguments\"'': <args-json-object-1>}\n...\n</tool_calls><end_of_sentence>\n' -}}{%- endif -%}{% for message in messages -%}{% if message['role'] == 'user' -%}{{ '<beginning_of_sentence>user name=user\n' + message['content'][0]['text'] + '<end_of_sentence>\n' -}}{% elif message['role'] == 'assistant' -%}{{ '<beginning_of_sentence>ai name=assistant\n' -}}{% for content in message['content'] | selectattr('type', 'equalto', 'text') -%}{{ content['text'] -}}{%- endfor -%}{{ '<end_of_sentence>\n' -}}{% elif message['role'] == 'tool' -%}{{ '<beginning_of_sentence>tool name=tools\n' }} {%- for content in message['content'] -%}{{- 'tool name: ' + content['name'] + '\n' + 'tool result: ' + content['text'] + '\n\n' -}} {%- endfor -%}{{- '<end_of_sentence>\n' -}}{% endif -%}{%- endfor -%}{% if add_generation_prompt -%}{{ '<beginning_of_sentence>ai name=assistant\n' -}}{%- endif -%}"
|
| 10 |
}
|