fix code
Browse files- config.json +80 -80
- modeling_minimax_text_01.py +3 -3
config.json
CHANGED
@@ -4,86 +4,86 @@
|
|
4 |
],
|
5 |
"attention_dropout": 0.0,
|
6 |
"layer_types": [
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
],
|
88 |
"auto_map": {
|
89 |
"AutoConfig": "configuration_minimax_text_01.MiniMaxText01Config",
|
|
|
4 |
],
|
5 |
"attention_dropout": 0.0,
|
6 |
"layer_types": [
|
7 |
+
"linear_attention",
|
8 |
+
"linear_attention",
|
9 |
+
"linear_attention",
|
10 |
+
"linear_attention",
|
11 |
+
"linear_attention",
|
12 |
+
"linear_attention",
|
13 |
+
"linear_attention",
|
14 |
+
"full_attention",
|
15 |
+
"linear_attention",
|
16 |
+
"linear_attention",
|
17 |
+
"linear_attention",
|
18 |
+
"linear_attention",
|
19 |
+
"linear_attention",
|
20 |
+
"linear_attention",
|
21 |
+
"linear_attention",
|
22 |
+
"full_attention",
|
23 |
+
"linear_attention",
|
24 |
+
"linear_attention",
|
25 |
+
"linear_attention",
|
26 |
+
"linear_attention",
|
27 |
+
"linear_attention",
|
28 |
+
"linear_attention",
|
29 |
+
"linear_attention",
|
30 |
+
"full_attention",
|
31 |
+
"linear_attention",
|
32 |
+
"linear_attention",
|
33 |
+
"linear_attention",
|
34 |
+
"linear_attention",
|
35 |
+
"linear_attention",
|
36 |
+
"linear_attention",
|
37 |
+
"linear_attention",
|
38 |
+
"full_attention",
|
39 |
+
"linear_attention",
|
40 |
+
"linear_attention",
|
41 |
+
"linear_attention",
|
42 |
+
"linear_attention",
|
43 |
+
"linear_attention",
|
44 |
+
"linear_attention",
|
45 |
+
"linear_attention",
|
46 |
+
"full_attention",
|
47 |
+
"linear_attention",
|
48 |
+
"linear_attention",
|
49 |
+
"linear_attention",
|
50 |
+
"linear_attention",
|
51 |
+
"linear_attention",
|
52 |
+
"linear_attention",
|
53 |
+
"linear_attention",
|
54 |
+
"full_attention",
|
55 |
+
"linear_attention",
|
56 |
+
"linear_attention",
|
57 |
+
"linear_attention",
|
58 |
+
"linear_attention",
|
59 |
+
"linear_attention",
|
60 |
+
"linear_attention",
|
61 |
+
"linear_attention",
|
62 |
+
"full_attention",
|
63 |
+
"linear_attention",
|
64 |
+
"linear_attention",
|
65 |
+
"linear_attention",
|
66 |
+
"linear_attention",
|
67 |
+
"linear_attention",
|
68 |
+
"linear_attention",
|
69 |
+
"linear_attention",
|
70 |
+
"full_attention",
|
71 |
+
"linear_attention",
|
72 |
+
"linear_attention",
|
73 |
+
"linear_attention",
|
74 |
+
"linear_attention",
|
75 |
+
"linear_attention",
|
76 |
+
"linear_attention",
|
77 |
+
"linear_attention",
|
78 |
+
"full_attention",
|
79 |
+
"linear_attention",
|
80 |
+
"linear_attention",
|
81 |
+
"linear_attention",
|
82 |
+
"linear_attention",
|
83 |
+
"linear_attention",
|
84 |
+
"linear_attention",
|
85 |
+
"linear_attention",
|
86 |
+
"full_attention"
|
87 |
],
|
88 |
"auto_map": {
|
89 |
"AutoConfig": "configuration_minimax_text_01.MiniMaxText01Config",
|
modeling_minimax_text_01.py
CHANGED
@@ -1200,13 +1200,13 @@ class MiniMaxText01Model(MiniMaxText01PreTrainedModel):
|
|
1200 |
self.vocab_size = config.vocab_size
|
1201 |
|
1202 |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1203 |
-
self.
|
1204 |
config_copy = copy.deepcopy(config)
|
1205 |
|
1206 |
self.layers = nn.ModuleList([])
|
1207 |
for i in range(config.num_hidden_layers):
|
1208 |
_config = copy.deepcopy(config)
|
1209 |
-
if self.
|
1210 |
_config._attn_implementation = 'linear_attention'
|
1211 |
_config.attention_type = 0
|
1212 |
else:
|
@@ -1305,7 +1305,7 @@ class MiniMaxText01Model(MiniMaxText01PreTrainedModel):
|
|
1305 |
seq_length_with_past = seq_length
|
1306 |
if past_key_values is not None:
|
1307 |
for idx in range(len(past_key_values)):
|
1308 |
-
if self.
|
1309 |
past_key_values_length = past_key_values[idx][0].shape[-3]
|
1310 |
seq_length_with_past = seq_length_with_past + past_key_values_length
|
1311 |
break
|
|
|
1200 |
self.vocab_size = config.vocab_size
|
1201 |
|
1202 |
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1203 |
+
self.layer_types = config.layer_types
|
1204 |
config_copy = copy.deepcopy(config)
|
1205 |
|
1206 |
self.layers = nn.ModuleList([])
|
1207 |
for i in range(config.num_hidden_layers):
|
1208 |
_config = copy.deepcopy(config)
|
1209 |
+
if self.layer_types[i] == "linear_attention":
|
1210 |
_config._attn_implementation = 'linear_attention'
|
1211 |
_config.attention_type = 0
|
1212 |
else:
|
|
|
1305 |
seq_length_with_past = seq_length
|
1306 |
if past_key_values is not None:
|
1307 |
for idx in range(len(past_key_values)):
|
1308 |
+
if self.layer_types[idx] == "full_attention":
|
1309 |
past_key_values_length = past_key_values[idx][0].shape[-3]
|
1310 |
seq_length_with_past = seq_length_with_past + past_key_values_length
|
1311 |
break
|