Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
This model has been quantized using [GPTQModel](https://github.com/ModelCloud/GPTQModel).
|
2 |
+
|
3 |
+
- **bits**: 4
|
4 |
+
- **group_size**: 128
|
5 |
+
- **desc_act**: true
|
6 |
+
- **static_groups**: false
|
7 |
+
- **sym**: true
|
8 |
+
- **lm_head**: false
|
9 |
+
- **damp_percent**: 0.01
|
10 |
+
- **true_sequential**: true
|
11 |
+
- **model_name_or_path**: ""
|
12 |
+
- **model_file_base_name**: "model"
|
13 |
+
- **quant_method**: "gptq"
|
14 |
+
- **checkpoint_format**: "gptq"
|
15 |
+
- **meta**:
|
16 |
+
- **quantizer**: "gptqmodel:0.9.9-dev0"
|
17 |
+
|
18 |
+
|
19 |
+
You can use [GPTQModel](https://github.com/ModelCloud/GPTQModel) for model inference.
|
20 |
+
```python
|
21 |
+
import torch
|
22 |
+
from transformers import AutoTokenizer, GenerationConfig
|
23 |
+
from gptqmodel import GPTQModel
|
24 |
+
model_name = "/monster/data/model/DeepSeek-V2-Chat-0628/gptq_gptq_4_0719/"
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
26 |
+
# `max_memory` should be set based on your devices
|
27 |
+
max_memory = {i: "75GB" for i in range(2)}
|
28 |
+
# `device_map` cannot be set to `auto`
|
29 |
+
model = GPTQModel.from_quantized(model_name, trust_remote_code=True, device_map="sequential", max_memory=max_memory, torch_dtype=torch.float16, attn_implementation="eager")
|
30 |
+
|
31 |
+
model.generation_config = GenerationConfig.from_pretrained(model_name)
|
32 |
+
model.generation_config.pad_token_id = model.generation_config.eos_token_id
|
33 |
+
|
34 |
+
messages = [
|
35 |
+
{"role": "user", "content": "Write a piece of quicksort code in C++"}
|
36 |
+
]
|
37 |
+
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
|
38 |
+
outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=100)
|
39 |
+
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
|
40 |
+
print(result)
|
41 |
+
|
42 |
+
```
|