Upload README.md
Browse files
README.md
CHANGED
@@ -100,15 +100,22 @@ for i, query in enumerate(queries):
|
|
100 |
print(f"Query: {query}")
|
101 |
for j, doc in enumerate(documents):
|
102 |
print(f" Similarity: {scores[i, j]:.4f} | Document {j}: {doc[:80]}...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
#
|
108 |
-
# Query: How does neural network training work?
|
109 |
-
# Similarity: 0.6725 | Document 0: Machine learning is a subset of ...
|
110 |
-
# Similarity: 0.8287 | Document 1: Neural networks are trained ...
|
111 |
```
|
|
|
112 |
|
113 |
## Transformers.js
|
114 |
|
@@ -123,7 +130,7 @@ You can then use the model to compute embeddings like this:
|
|
123 |
import { AutoModel, AutoTokenizer, matmul } from "@huggingface/transformers";
|
124 |
|
125 |
// Download from the 🤗 Hub
|
126 |
-
const model_id = "
|
127 |
const tokenizer = await AutoTokenizer.from_pretrained(model_id);
|
128 |
const model = await AutoModel.from_pretrained(model_id, {
|
129 |
dtype: "fp32", // Options: "fp32" | "q8" | "q4"
|
@@ -216,13 +223,20 @@ similarities = model.similarity(query_embeds, doc_embeds)
|
|
216 |
print('After MRL:')
|
217 |
print(f"* Embeddings dimension: {query_embeds.shape[1]}")
|
218 |
print(f"* Similarities: \n\t{similarities}")
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
-
# After MRL:
|
221 |
-
# * Embeddings dimension: 256
|
222 |
-
# * Similarities:
|
223 |
-
# tensor([[0.9164, 0.7219],
|
224 |
-
# [0.6682, 0.8393]], device='cuda:0')
|
225 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
## Vector Quantization
|
228 |
Vector quantization, for example to `int8` or `binary`, can be performed as follows:
|
@@ -247,13 +261,20 @@ similarities = query_embeds.astype(int) @ doc_embeds.astype(int).T
|
|
247 |
print('After quantization:')
|
248 |
print(f"* Embeddings type: {query_embeds.dtype}")
|
249 |
print(f"* Similarities: \n{similarities}")
|
|
|
250 |
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
256 |
```
|
|
|
257 |
|
258 |
# Evaluation
|
259 |
|
|
|
100 |
print(f"Query: {query}")
|
101 |
for j, doc in enumerate(documents):
|
102 |
print(f" Similarity: {scores[i, j]:.4f} | Document {j}: {doc[:80]}...")
|
103 |
+
```
|
104 |
+
|
105 |
+
<details>
|
106 |
+
|
107 |
+
<summary>See example output</summary>
|
108 |
+
|
109 |
+
```
|
110 |
+
Query: What is machine learning?
|
111 |
+
Similarity: 0.9063 | Document 0: Machine learning is a subset of ...
|
112 |
+
Similarity: 0.7287 | Document 1: Neural networks are trained ...
|
113 |
|
114 |
+
Query: How does neural network training work?
|
115 |
+
Similarity: 0.6725 | Document 0: Machine learning is a subset of ...
|
116 |
+
Similarity: 0.8287 | Document 1: Neural networks are trained ...
|
|
|
|
|
|
|
|
|
117 |
```
|
118 |
+
</details>
|
119 |
|
120 |
## Transformers.js
|
121 |
|
|
|
130 |
import { AutoModel, AutoTokenizer, matmul } from "@huggingface/transformers";
|
131 |
|
132 |
// Download from the 🤗 Hub
|
133 |
+
const model_id = "MongoDB/mdbr-leaf-mt";
|
134 |
const tokenizer = await AutoTokenizer.from_pretrained(model_id);
|
135 |
const model = await AutoModel.from_pretrained(model_id, {
|
136 |
dtype: "fp32", // Options: "fp32" | "q8" | "q4"
|
|
|
223 |
print('After MRL:')
|
224 |
print(f"* Embeddings dimension: {query_embeds.shape[1]}")
|
225 |
print(f"* Similarities: \n\t{similarities}")
|
226 |
+
```
|
227 |
+
|
228 |
+
<details>
|
229 |
+
|
230 |
+
<summary>See example output</summary>
|
231 |
|
|
|
|
|
|
|
|
|
|
|
232 |
```
|
233 |
+
After MRL:
|
234 |
+
* Embeddings dimension: 256
|
235 |
+
* Similarities:
|
236 |
+
tensor([[0.9164, 0.7219],
|
237 |
+
[0.6682, 0.8393]], device='cuda:0')
|
238 |
+
```
|
239 |
+
</details>
|
240 |
|
241 |
## Vector Quantization
|
242 |
Vector quantization, for example to `int8` or `binary`, can be performed as follows:
|
|
|
261 |
print('After quantization:')
|
262 |
print(f"* Embeddings type: {query_embeds.dtype}")
|
263 |
print(f"* Similarities: \n{similarities}")
|
264 |
+
```
|
265 |
|
266 |
+
<details>
|
267 |
+
|
268 |
+
<summary>See example output</summary>
|
269 |
+
|
270 |
+
```
|
271 |
+
After quantization:
|
272 |
+
* Embeddings type: int8
|
273 |
+
* Similarities:
|
274 |
+
[[2202032 1422868]
|
275 |
+
[1421197 1845580]]
|
276 |
```
|
277 |
+
</details>
|
278 |
|
279 |
# Evaluation
|
280 |
|