activation / tests /kernels /test_poly_norm.py
iamwyldecat's picture
feat(rms-norm): Impl fused RMSNorm
f3b99fb
import random
import pytest
import torch
import activation
from .utils import assert_close, opcheck
DTYPES = [torch.float, torch.bfloat16, torch.half]
# NUM_TOKENS = [7, 83, 2048] # Arbitrary values for testing
# D = [512, 13824] # Arbitrary values for testing
NUM_TOKENS = [7, 13] # Arbitrary values for testing
D = [513] # Arbitrary values for testing
SEEDS = [0]
CUDA_DEVICES = [f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)]
def norm(x, eps: float) -> torch.Tensor:
return x / torch.sqrt(x.pow(2).mean(-1, keepdim=True) + eps)
def poly_norm(
x: torch.Tensor, weight: torch.Tensor, bias: torch.Tensor, eps: float
) -> torch.Tensor:
x = x.float()
return (
weight[0] * norm(x**3, eps)
+ weight[1] * norm(x**2, eps)
+ weight[2] * norm(x, eps)
+ bias
).to(weight.dtype)
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("d", D)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
def test_poly_norm(
num_tokens: int,
d: int,
dtype: torch.dtype,
seed: int,
device: str,
) -> None:
random.seed(seed)
torch.manual_seed(seed)
torch.set_default_device(device)
x = torch.randn(num_tokens, d, dtype=dtype, requires_grad=True)
weight = torch.randn(3, dtype=dtype, requires_grad=True)
bias = torch.randn(1, dtype=dtype, requires_grad=True)
eps = 1e-05
x.retain_grad()
weight.retain_grad()
bias.retain_grad()
# To separate gradient computation, clone the inputs
x_ref = x.detach().clone().requires_grad_(True)
weight_ref = weight.detach().clone().requires_grad_(True)
bias_ref = bias.detach().clone().requires_grad_(True)
torch_fn = poly_norm
op = activation.ops.poly_norm
fn = activation.poly_norm
layer = activation.layers.PolyNorm(eps)
layer.weight = torch.nn.Parameter(weight)
layer.bias = torch.nn.Parameter(bias)
out = torch.empty(x.shape, dtype=x.dtype, device=x.device)
opcheck(op, (out, x, weight, bias, eps))
out = fn(x, weight, bias, eps)
mod_out = layer(x)
ref_out = torch_fn(x_ref, weight_ref, bias_ref, eps)
assert_close(out, ref_out)
assert_close(mod_out, out, atol=0.0, rtol=0.0)
# test backward pass
out_grad = torch.randn_like(out)
out_grad = out_grad / out_grad.norm()
ref_out.backward(out_grad)
mod_out.backward(out_grad)
assert_close(x.grad, x_ref.grad)
assert_close(layer.bias.grad, bias_ref.grad, rtol=0.05)
assert_close(layer.weight.grad, weight_ref.grad, rtol=0.05)