import random import pytest import torch import activation from .utils import assert_close, opcheck DTYPES = [torch.float, torch.bfloat16, torch.half] # NUM_TOKENS = [7, 83, 2048] # Arbitrary values for testing # D = [512, 13824] # Arbitrary values for testing NUM_TOKENS = [7, 13] # Arbitrary values for testing D = [513] # Arbitrary values for testing SEEDS = [0] CUDA_DEVICES = [f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)] @pytest.mark.parametrize("num_tokens", NUM_TOKENS) @pytest.mark.parametrize("d", D) @pytest.mark.parametrize("dtype", DTYPES) @pytest.mark.parametrize("seed", SEEDS) @pytest.mark.parametrize("device", CUDA_DEVICES) def test_rms_norm( num_tokens: int, d: int, dtype: torch.dtype, seed: int, device: str, ) -> None: random.seed(seed) torch.manual_seed(seed) torch.set_default_device(device) x = torch.randn(num_tokens, d, dtype=dtype, requires_grad=True) weight = torch.randn(d, dtype=dtype, requires_grad=True) eps = 1e-05 x.retain_grad() weight.retain_grad() # To separate gradient computation, clone the inputs x_ref = x.detach().clone().requires_grad_(True) weight_ref = weight.detach().clone().requires_grad_(True) torch_layer = torch.nn.RMSNorm(d, eps=eps, dtype=dtype) torch_layer.weight = torch.nn.Parameter(weight_ref) op = activation.ops.rms_norm fn = activation.rms_norm layer = activation.layers.RMSNorm(d, eps=eps, dtype=dtype) layer.weight = torch.nn.Parameter(weight) out = torch.empty(x.shape, dtype=x.dtype, device=x.device) opcheck(op, (out, x, weight, eps)) out = fn(x, weight, eps) mod_out = layer(x) ref_out = torch_layer(x_ref) assert_close(out, ref_out) assert_close(mod_out, out, atol=0.0, rtol=0.0) # test backward pass out_grad = torch.randn_like(out) out_grad = out_grad / out_grad.norm() ref_out.backward(out_grad) mod_out.backward(out_grad) assert_close(x.grad, x_ref.grad) assert_close(layer.weight.grad, torch_layer.weight.grad, rtol=0.05)