File size: 3,636 Bytes
13f216a d77bacd 13f216a d77bacd 13f216a d77bacd 13f216a d77bacd 13f216a d77bacd 13f216a d77bacd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
---
tags:
- generated_from_trainer
datasets:
- pile-instruct/
metrics:
- accuracy
model-index:
- name: layer_4,5,6,7,8
results:
- task:
type: text-generation
name: Causal Language Modeling
dataset:
name: pile-instruct/
type: pile-instruct/
split: None
metrics:
- type: accuracy
value: 0.38424293893426953
name: Accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layer_4,5,6,7,8
This model is a fine-tuned version of [P1ayer-1/pythia-deduped-1b-chat-base](https://huggingface.co/P1ayer-1/pythia-deduped-1b-chat-base) on the pile-instruct/ dataset.
It achieves the following results on the evaluation set:
- Loss: 4.9648
- Accuracy: 0.3842
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 12
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 96
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 6000
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| 7.4574 | 0.1 | 200 | 0.1688 | 7.4961 |
| 7.0445 | 0.2 | 400 | 0.1997 | 7.0547 |
| 6.7483 | 0.3 | 600 | 0.2190 | 6.7930 |
| 6.4568 | 0.4 | 800 | 0.2376 | 6.5703 |
| 6.2865 | 0.5 | 1000 | 0.2552 | 6.375 |
| 6.1028 | 0.6 | 1200 | 0.2793 | 6.1484 |
| 5.8888 | 0.7 | 1400 | 0.2982 | 5.9570 |
| 5.7362 | 0.8 | 1600 | 0.3121 | 5.8008 |
| 5.6507 | 0.9 | 1800 | 0.3238 | 5.6797 |
| 5.565 | 1.0 | 2000 | 0.3318 | 5.5781 |
| 5.4688 | 1.1 | 2200 | 0.3392 | 5.4961 |
| 5.4044 | 1.2 | 2400 | 0.3456 | 5.4219 |
| 5.3323 | 1.3 | 2600 | 0.3516 | 5.3594 |
| 5.2598 | 1.4 | 2800 | 0.3562 | 5.3047 |
| 5.2159 | 1.5 | 3000 | 0.3596 | 5.2578 |
| 5.1992 | 1.6 | 3200 | 0.3638 | 5.2148 |
| 5.1429 | 1.69 | 3400 | 0.3672 | 5.1797 |
| 5.095 | 1.79 | 3600 | 0.3696 | 5.1445 |
| 5.0646 | 1.89 | 3800 | 0.3715 | 5.1172 |
| 5.059 | 1.99 | 4000 | 0.3742 | 5.0859 |
| 5.0152 | 2.09 | 4200 | 0.3756 | 5.0664 |
| 5.0251 | 2.19 | 4400 | 0.3769 | 5.0469 |
| 5.022 | 2.29 | 4600 | 0.3790 | 5.0273 |
| 4.9939 | 2.39 | 4800 | 0.3798 | 5.0156 |
| 4.924 | 2.49 | 5000 | 0.3811 | 5.0 |
| 4.9335 | 2.59 | 5200 | 0.3821 | 4.9883 |
| 4.9231 | 2.69 | 5400 | 0.3829 | 4.9805 |
| 4.8886 | 2.79 | 5600 | 0.3835 | 4.9727 |
| 4.9419 | 2.89 | 5800 | 0.3843 | 4.9648 |
| 4.9227 | 2.99 | 6000 | 0.3842 | 4.9648 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.13.3
## Wandb Report
https://wandb.ai/ontocord/pythia-1b-deduped-layer-test-min-pile-instruct/runs/zad9qli2 |