File size: 3,636 Bytes
13f216a
 
 
d77bacd
 
13f216a
 
 
d77bacd
 
 
 
 
 
 
 
 
 
 
 
 
13f216a
 
 
 
 
d77bacd
13f216a
d77bacd
13f216a
 
d77bacd
13f216a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d77bacd
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---
tags:
- generated_from_trainer
datasets:
- pile-instruct/
metrics:
- accuracy
model-index:
- name: layer_4,5,6,7,8
  results:
  - task:
      type: text-generation
      name: Causal Language Modeling
    dataset:
      name: pile-instruct/
      type: pile-instruct/
      split: None
    metrics:
    - type: accuracy
      value: 0.38424293893426953
      name: Accuracy
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layer_4,5,6,7,8

This model is a fine-tuned version of [P1ayer-1/pythia-deduped-1b-chat-base](https://huggingface.co/P1ayer-1/pythia-deduped-1b-chat-base) on the pile-instruct/ dataset.
It achieves the following results on the evaluation set:
- Loss: 4.9648
- Accuracy: 0.3842

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 12
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 96
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 6000

### Training results

| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| 7.4574        | 0.1   | 200  | 0.1688   | 7.4961          |
| 7.0445        | 0.2   | 400  | 0.1997   | 7.0547          |
| 6.7483        | 0.3   | 600  | 0.2190   | 6.7930          |
| 6.4568        | 0.4   | 800  | 0.2376   | 6.5703          |
| 6.2865        | 0.5   | 1000 | 0.2552   | 6.375           |
| 6.1028        | 0.6   | 1200 | 0.2793   | 6.1484          |
| 5.8888        | 0.7   | 1400 | 0.2982   | 5.9570          |
| 5.7362        | 0.8   | 1600 | 0.3121   | 5.8008          |
| 5.6507        | 0.9   | 1800 | 0.3238   | 5.6797          |
| 5.565         | 1.0   | 2000 | 0.3318   | 5.5781          |
| 5.4688        | 1.1   | 2200 | 0.3392   | 5.4961          |
| 5.4044        | 1.2   | 2400 | 0.3456   | 5.4219          |
| 5.3323        | 1.3   | 2600 | 0.3516   | 5.3594          |
| 5.2598        | 1.4   | 2800 | 0.3562   | 5.3047          |
| 5.2159        | 1.5   | 3000 | 0.3596   | 5.2578          |
| 5.1992        | 1.6   | 3200 | 0.3638   | 5.2148          |
| 5.1429        | 1.69  | 3400 | 0.3672   | 5.1797          |
| 5.095         | 1.79  | 3600 | 0.3696   | 5.1445          |
| 5.0646        | 1.89  | 3800 | 0.3715   | 5.1172          |
| 5.059         | 1.99  | 4000 | 0.3742   | 5.0859          |
| 5.0152        | 2.09  | 4200 | 0.3756   | 5.0664          |
| 5.0251        | 2.19  | 4400 | 0.3769   | 5.0469          |
| 5.022         | 2.29  | 4600 | 0.3790   | 5.0273          |
| 4.9939        | 2.39  | 4800 | 0.3798   | 5.0156          |
| 4.924         | 2.49  | 5000 | 0.3811   | 5.0             |
| 4.9335        | 2.59  | 5200 | 0.3821   | 4.9883          |
| 4.9231        | 2.69  | 5400 | 0.3829   | 4.9805          |
| 4.8886        | 2.79  | 5600 | 0.3835   | 4.9727          |
| 4.9419        | 2.89  | 5800 | 0.3843   | 4.9648          |
| 4.9227        | 2.99  | 6000 | 0.3842   | 4.9648          |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.13.3


## Wandb Report
 https://wandb.ai/ontocord/pythia-1b-deduped-layer-test-min-pile-instruct/runs/zad9qli2